cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052515 Number of ordered pairs of complementary subsets of an n-set with both subsets of cardinality at least 2.

Original entry on oeis.org

0, 0, 0, 0, 6, 20, 50, 112, 238, 492, 1002, 2024, 4070, 8164, 16354, 32736, 65502, 131036, 262106, 524248, 1048534, 2097108, 4194258, 8388560, 16777166, 33554380, 67108810, 134217672, 268435398, 536870852, 1073741762
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n) is the number of binary sequences of length n having at least two 0's and at least two 1's. a(4)=6 because there are six binary sequences of length four that have two or more 0's and two or more 1's: 0011, 0101, 0110, 1100, 1010, 1001. - Geoffrey Critzer, Feb 11 2009
For n>3, a(n) is also the sum of those terms from the n-th row of Pascal's triangle which also occur in A006987: 6, 10+10, 15+20+15, 21+35+35+21,... - Douglas Latimer, Apr 02 2012
From Dennis P. Walsh, Apr 09 2013: (Start)
Column 2 of triangle A200091.
Number of doubly-surjective functions f:[n]->[2].
Number of ways to distribute n different toys to 2 children so that each child gets at least 2 toys. (End)
a(n) is the number of subsets of an n-set of cardinality k with 2 <= k <= n - 2. - Rick L. Shepherd, Dec 05 2014

Programs

  • Magma
    m:=35; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (Exp(x)-1-x)^2 )); [0,0,0,0] cat [Factorial(n+3)*b[n]: n in [1..m-5]]; // G. C. Greubel, May 13 2019
    
  • Maple
    Pairs spec := [S,{S=Prod(B,B),B=Set(Z,2 <= card)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Join[{0,0,0}, LinearRecurrence[{4,-5,2}, {0,6,20}, 35]] (* G. C. Greubel, May 13 2019 *)
    With[{nn=30},CoefficientList[Series[(Exp[x]-x-1)^2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 29 2023 *)
  • PARI
    concat([0,0,0,0],Vec((6-4*x)/(1-x)^2/(1-2*x)+O(x^35))) \\ Charles R Greathouse IV, Apr 03 2012
    
  • PARI
    x='x+O('x^35); concat([0,0,0,0],Vec(serlaplace((exp(x)-x-1)^2))) \\ Joerg Arndt, Apr 10 2013
    
  • Sage
    (2*x^4*(3-2*x)/((1-x)^2*(1-2*x))).series(x, 35).coefficients(x, sparse=False) # G. C. Greubel, May 13 2019

Formula

E.g.f.: (exp(x) - x - 1)^2. - Joerg Arndt, Apr 10 2013
n*a(n+2) - (1+3*n)*a(n+1) + 2(1+n)*a(n) = 0, with a(0) = .. = a(3) = 0, a(4) = 6.
For n>2, a(n) = 2^n - 2n - 2 = A005803(n) - 2 = A070313(n) - 1 = A071099(n) - A071099(n+1) + 1 = 2*A000247(n-1). - Ralf Stephan, Jan 11 2004
G.f.: 2*x^4*(3-2*x)/((1-x)^2*(1-2*x)). - Colin Barker, Feb 19 2012

Extensions

More terms from Ralf Stephan, Jan 11 2004
Definition corrected by Rainer Rosenthal, Feb 12 2010
Definition further clarified by Rick L. Shepherd, Dec 05 2014