A052539 a(n) = 4^n + 1.
2, 5, 17, 65, 257, 1025, 4097, 16385, 65537, 262145, 1048577, 4194305, 16777217, 67108865, 268435457, 1073741825, 4294967297, 17179869185, 68719476737, 274877906945, 1099511627777, 4398046511105, 17592186044417
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..175
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 470.
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
- Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences 8(10) (2019).
- Eric Weisstein's World of Mathematics, Edge Cover Number.
- Eric Weisstein's World of Mathematics, Sierpinski Tetrahedron Graph.
- Wikipedia, Lucas sequence: Specific names.
- Index entries for linear recurrences with constant coefficients, signature (5,-4).
Crossrefs
Programs
-
GAP
List([0..30], n-> 4^n+1); # G. C. Greubel, May 09 2019
-
Magma
[4^n+1: n in [0..30] ]; // Vincenzo Librandi, Apr 30 2011
-
Maple
spec := [S,{S=Union(Sequence(Union(Z,Z,Z,Z)),Sequence(Z))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..30); A052539:=n->4^n + 1; seq(A052539(n), n=0..30); # Wesley Ivan Hurt, Jun 12 2014
-
Mathematica
Table[4^n + 1, {n, 0, 30}] (* From Eric W. Weisstein, Sep 20 2017 *) 4^Range[0, 30] + 1 LinearRecurrence[{5, -4}, {2, 5}, 30] CoefficientList[Series[(2-5x)/(1-5x+4x^2), {x, 0, 30}], x] (* End *)
-
PARI
a(n)=4^n+1 \\ Charles R Greathouse IV, Nov 20 2011
-
Sage
[4^n+1 for n in (0..30)] # G. C. Greubel, May 09 2019
Formula
a(n) = 4^n + 1.
a(n) = 4*a(n-1) - 3 = 5*a(n-1) - 4*a(n-2).
G.f.: (2 - 5*x)/((1 - 4*x)*(1 - x)).
E.g.f.: exp(x) + exp(4*x). - Mohammad K. Azarian, Jan 02 2009
From Klaus Purath, Sep 23 2020: (Start)
a(n) = 3*4^(n-1) + a(n-1).
a(n) = (a(n-1)^2 + 9*4^(n-2))/a(n-2).
a(n) = A178675(n) - 3. (End)
Comments