A052541 Expansion of 1/(1-3*x-x^3).
1, 3, 9, 28, 87, 270, 838, 2601, 8073, 25057, 77772, 241389, 749224, 2325444, 7217721, 22402387, 69532605, 215815536, 669848995, 2079079590, 6453054306, 20029011913, 62166115329, 192951400293, 598883212792, 1858815753705, 5769398661408, 17907079197016
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 475
- Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3
- José L. Ramírez, Víctor F. Sirvent, A note on the k-Narayana sequence, Annales Mathematicae et Informaticae, 45 (2015) pp. 91-105.
- Index entries for linear recurrences with constant coefficients, signature (3,0,1).
Crossrefs
Cf. A076264.
Programs
-
GAP
a:=[1,3,9];; for n in [4..30] do a[n]:=3*a[n-1]+a[n-3]; od; a; # G. C. Greubel, May 09 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x/(1-3*x-x^3) )); // G. C. Greubel, May 09 2019 -
Maple
spec := [S,{S=Sequence(Union(Z,Z,Z,Prod(Z,Z,Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..30);
-
Mathematica
CoefficientList[Series[x/(1-3*x-x^3), {x, 0, 30}], x] (* Zerinvary Lajos, Mar 29 2007 *) LinearRecurrence[{3,0,1},{1,3,9},30] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2012 *)
-
PARI
my(x='x+O('x^30)); Vec(x/(1-3*x-x^3)) \\ G. C. Greubel, May 09 2019
-
Sage
(x/(1-3*x-x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 09 2019
Formula
G.f.: 1/(1 - 3*x - x^3).
a(n) = 3*a(n-1) + a(n-3), with a(0)=1, a(1)=3.
a(n) = Sum_{alpha = RootOf(-1+3*x+x^3)} (1/15)*(4 + alpha + 2*alpha^2) * alpha^(-n-1).
a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k, k) * 3^(n-3*k). - Paul Barry, Oct 20 2004
Extensions
More terms from James Sellers, Jun 06 2000
Comments