cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052541 Expansion of 1/(1-3*x-x^3).

Original entry on oeis.org

1, 3, 9, 28, 87, 270, 838, 2601, 8073, 25057, 77772, 241389, 749224, 2325444, 7217721, 22402387, 69532605, 215815536, 669848995, 2079079590, 6453054306, 20029011913, 62166115329, 192951400293, 598883212792, 1858815753705, 5769398661408, 17907079197016
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

A transform of A000244 under the mapping mapping g(x)->(1/(1-x^3))g(x/(1-x^3)). - Paul Barry, Oct 20 2004
a(n) equals the number of n-length words on {0,1,2,3} such that 0 appears only in a run which length is a multiple of 3. - Milan Janjic, Feb 17 2015

Crossrefs

Cf. A076264.

Programs

  • GAP
    a:=[1,3,9];; for n in [4..30] do a[n]:=3*a[n-1]+a[n-3]; od; a; # G. C. Greubel, May 09 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x/(1-3*x-x^3) )); // G. C. Greubel, May 09 2019
    
  • Maple
    spec := [S,{S=Sequence(Union(Z,Z,Z,Prod(Z,Z,Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..30);
  • Mathematica
    CoefficientList[Series[x/(1-3*x-x^3), {x, 0, 30}], x] (* Zerinvary Lajos, Mar 29 2007 *)
    LinearRecurrence[{3,0,1},{1,3,9},30] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2012 *)
  • PARI
    my(x='x+O('x^30)); Vec(x/(1-3*x-x^3)) \\ G. C. Greubel, May 09 2019
    
  • Sage
    (x/(1-3*x-x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 09 2019
    

Formula

G.f.: 1/(1 - 3*x - x^3).
a(n) = 3*a(n-1) + a(n-3), with a(0)=1, a(1)=3.
a(n) = Sum_{alpha = RootOf(-1+3*x+x^3)} (1/15)*(4 + alpha + 2*alpha^2) * alpha^(-n-1).
a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k, k) * 3^(n-3*k). - Paul Barry, Oct 20 2004

Extensions

More terms from James Sellers, Jun 06 2000