A052856
E.g.f.: (1-3*exp(x)+exp(2*x))/(exp(x)-2).
Original entry on oeis.org
1, 2, 4, 14, 76, 542, 4684, 47294, 545836, 7087262, 102247564, 1622632574, 28091567596, 526858348382, 10641342970444, 230283190977854, 5315654681981356, 130370767029135902, 3385534663256845324
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{B=Sequence(C),C=Set(Z,1 <= card),S=Union(B,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
With[{nn=20},CoefficientList[Series[(1-3Exp[x]+Exp[x]^2)/(-2+Exp[x]),{x,0,nn}],x]Range[0,nn]!] (* Harvey P. Dale, Nov 24 2012 *)
-
a(n)=if(n<0,0,n!*polcoeff(subst(y+1/(1-y),y,exp(x+x*O(x^n))-1),n))
Original entry on oeis.org
1, 1, 6, 12, 120, 360, 5040, 20160, 362880, 1814400, 39916800, 239500800, 6227020800, 43589145600, 1307674368000, 10461394944000, 355687428096000, 3201186852864000, 121645100408832000, 1216451004088320000, 51090942171709440000, 562000363888803840000
Offset: 1
Cf.
A000290,
A000330,
A002415,
A005408,
A005585,
A029651,
A040977,
A050486,
A053347,
A054333,
A054334,
A057788.
A256031
Number of irreducible idempotents in partial Brauer monoid PB_n.
Original entry on oeis.org
2, 3, 12, 30, 240, 840, 10080, 45360, 725760, 3991680, 79833600, 518918400, 12454041600, 93405312000, 2615348736000, 22230464256000, 711374856192000, 6758061133824000, 243290200817664000, 2554547108585472000, 102181884343418880000, 1175091669949317120000
Offset: 1
-
A256031 := proc(n)
if type(n,'odd') then
2*n! ;
else
(n+1)*(n-1)! ;
end if;
end proc:
seq(A256031(n),n=1..20) ; # R. J. Mathar, Mar 14 2015
-
a[n_] := If[OddQ[n], 2*n!, (n + 1)*(n - 1)!];
Array[a, 20] (* Jean-François Alcover, Nov 24 2017, from Maple *)
A256881
a(n) = n!/ceiling(n/2).
Original entry on oeis.org
1, 2, 3, 12, 40, 240, 1260, 10080, 72576, 725760, 6652800, 79833600, 889574400, 12454041600, 163459296000, 2615348736000, 39520825344000, 711374856192000, 12164510040883200, 243290200817664000, 4644631106519040000, 102181884343418880000, 2154334728240414720000
Offset: 1
Cf.
A009445,
A052612,
A052616,
A052849,
A081457,
A208529,
A098558,
A107991,
A110468,
A229244,
A256031.
Showing 1-4 of 4 results.
Comments