cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A349648 Expansion of g.f.: Catalan(x)/Catalan(-x).

Original entry on oeis.org

1, 2, 2, 8, 14, 64, 132, 640, 1430, 7168, 16796, 86016, 208012, 1081344, 2674440, 14057472, 35357670, 187432960, 477638700, 2549088256, 6564120420, 35223764992, 91482563640, 493132709888, 1289904147324, 6979724509184, 18367353072152, 99710350131200
Offset: 0

Views

Author

Alexander Burstein, Nov 23 2021

Keywords

Crossrefs

Cf. A000108, A001622, A048990 (bijection), A052707 (bijection), A006318, A079489, A246062, A333564.

Programs

  • Maple
    gf:= (c-> c(x)/c(-x))(x-> hypergeom([1/2, 1], [2], 4*x)):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..35);  # Alois P. Heinz, Nov 23 2021
  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-4x])/(Sqrt[1+4x]-1),{x,0,24}],x]

Formula

a(2*n) = A048990(n) = A000108(2*n), n>=0.
a(2*n+1) = A052707(n+1) = 2^(2*n+1)*A000108(n), n>=0.
G.f.: A(x) = C(x)/C(-x) = (1 - sqrt(1 - 4*x))/(sqrt(1 + 4*x) - 1), where C(x) is the g.f. of A000108.
G.f.: A(x) = F(x^2) + 2*x*F(x^2)^2 = (C(x) + C(-x))/2 + 2*x*C(4*x^2), where F(x) is the g.f. of A048990.
G.f.: A(-x) = 1/A(x).
G.f.: A(x) = R(x*C(-x)^2) = 1/R(-x*C(x)^2), where R(x) is the g.f. of A006318.
G.f.: A(x) = (1 + x*C(x)*C(-x))/(1 - x*C(x)*C(-x)), see A079489 for the expansion of C(x)*C(-x).
D-finite with recurrence n*(n-1)*(n+1)*a(n) -4*(n-1)*(8*n^2-32*n+35)*a(n-2) +64*(2*n-5)*(2*n-7)*(n-4)*a(n-4)=0. - R. J. Mathar, Mar 06 2022
Sum_{n>=0} 1/a(n) = 28/15 + 2*Pi/(9*sqrt(3)) + 64*arcsin(1/4)/(75*sqrt(15)) - 12*log(phi)/(25*sqrt(5)), where phi is the golden ratio (A001622). - Amiram Eldar, Apr 20 2023
G.f.: A(x) = exp( Sum_{n >= 1} binomial(4*n-2,2*n-1)*x^(2*n-1)/(2*n-1) ). - Peter Bala, Apr 28 2023

A052737 a(n) = ((2*n)!/n!)*2^(2*n+1).

Original entry on oeis.org

0, 2, 16, 384, 15360, 860160, 61931520, 5449973760, 566797271040, 68015672524800, 9250131463372800, 1406019982432665600, 236211357048687820800, 43462889696958559027200, 8692577939391711805440000, 1877596834908609749975040000, 435602465698797461994209280000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

A simple context-free grammar in a labeled universe.

Crossrefs

Cf. A052707.

Programs

  • Maple
    spec := [S,{B=Union(Z,C),S=Union(B,Z,C),C=Prod(S,S)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
    [seq((2*n)!/n!*2^(2*n+1), n=0..12)]; # Zerinvary Lajos, Sep 28 2006
  • Mathematica
    With[{nn=20},CoefficientList[Series[1/4-Sqrt[1-16x]/4,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 12 2015 *)

Formula

E.g.f.: 1/4 - (1/4)*sqrt(1-16*x).
D-finite Recurrence: a(1)=2, (8-16*n)*a(n) + a(n+1)=0, i.e. a(n) +8*(-2*n+3)*a(n-1)=0.
a(n) = (1/8)*16^(n+1)*Gamma(n+1/2)/Pi^(1/2).
a(n) = n! * A052707(n). - R. J. Mathar, Aug 21 2014
From Amiram Eldar, Mar 22 2022: (Start)
Sum_{n>=1} 1/a(n) = sqrt(Pi)*exp(1/16)*erf(1/4)/8, where erf is the error function.
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(Pi)*exp(-1/16)*erfi(1/4)/8, where erfi is the imaginary error function. (End)
a(n)=2*A052734(n). - R. J. Mathar, Jan 13 2025

Extensions

Better definition from Zerinvary Lajos, Sep 28 2006
More terms from Harvey P. Dale, Aug 12 2015
Showing 1-2 of 2 results.