cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A052745 Expansion of e.g.f. log(-1/(-1+x))^2*x.

Original entry on oeis.org

0, 0, 0, 6, 24, 110, 600, 3836, 28224, 235224, 2191680, 22584672, 255087360, 3134139840, 41620400640, 594082771200, 9070900715520, 147531542054400, 2546434166169600, 46489412442009600, 895079522340864000, 18125736166340812800, 385129713617510400000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [(-1)^(n+1)*2*n*StirlingFirst(n-1, 2): n in [1..30]]; // Vincenzo Librandi, Jul 08 2015
  • Maple
    spec := [S,{B=Cycle(Z),S=Prod(Z,B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
    # alternative
    A052745 := proc(n)
        (log(1/(1-x)))^2*x ;
        coeftayl(%,x=0,n)*n! ;
    end proc:
    seq(A052745(n),n=0..20) ; # R. J. Mathar, Jan 20 2025
  • Mathematica
    Range[0, 30]! CoefficientList[Series[Log[-1/(-1 + x)]^2 x,{x, 0, 30}], x] (* Vincenzo Librandi, Jul 08 2015 *)
  • Maxima
    makelist((-1)^(n+1)*2*n*stirling1(n-1, 2), n, 0, 20); /* Bruno Berselli, May 25 2011 */
    

Formula

Recurrence: a(1)=0, a(2)=0, a(3)=6, (-n+n^4+n^3-3*n^2+2)*a(n)+(-2*n^3-3*n^2+2*n)*a(n+1)+(n^2+n)*a(n+2)=0.
a(n) = (-1)^(n+1)*2*n*Stirling1(n-1, 2). - Vladeta Jovovic, Nov 08 2003

A052783 Expansion of e.g.f. x*log(-1/(-1+x))^5.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 720, 12600, 168000, 2116800, 26938800, 355509000, 4920379200, 71753338800, 1104107484480, 17923866760800, 306665482905600, 5521899225024000, 104470579944195840, 2073203785324575360
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Programs

  • Maple
    spec := [S,{B=Cycle(Z),S=Prod(Z,B,B,B,B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
    # alternative
    A052783 := proc(n)
        (log(1/(1-x)))^5*x ;
        coeftayl(%,x=0,n)*n! ;
    end proc:
    seq(A052783(n),n=0..20) ; # R. J. Mathar, Jan 20 2025

Formula

Recurrence: {a(1)=0, a(2)=0, a(4)=0, a(3)=0, a(5)=0, a(6)=720, (500*n^3 + 55*n^2 - 300*n^4 - n^10 + 120 - 224*n^5 - 20*n^8 + 146*n^6 - 10*n^9 + 60*n^7 - 326*n)*a(n) + (225*n^7 - n^4 - 299*n^5 + 120*n + 60*n^8 + 5*n^9 + 195*n^6 - 446*n^2 + 501*n^3)*a(n + 1) + ( - 535*n^3 - 895*n^4 - 10*n^8 - 130*n^7 - 300*n^2 - 1135*n^5 - 595*n^6)*a(n + 2) + (130*n^6 + 10*n^7 + 200*n + 1425*n^3 + 1330*n^4 + 615*n^5 + 790*n^2)*a(n + 3) + ( - 150*n - 455*n^2 - 60*n^5 - 5*n^6 - 510*n^3 - 260*n^4)*a(n + 4) + (n^5 + 10*n^4 + 35*n^3 + 50*n^2 + 24*n)*a(n + 5)}.

A052790 Expansion of e.g.f.: x^2*log(1-x)^4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 720, 10080, 114240, 1270080, 14621040, 177629760, 2292618240, 31485168000, 459767275968, 7126635035520, 117007217832960, 2030137891891200, 37138576448883456, 714734162773420032, 14439823458634690560, 305638240397811793920, 6764967047810572812288
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Original name: a simple grammar.

Crossrefs

Programs

  • Maple
    spec := [S,{B=Cycle(Z),S=Prod(Z,Z,B,B,B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    With[{nn=20},CoefficientList[Series[x^2 Log[-1/(x-1)]^4,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 28 2016 *)
  • PARI
    a(n)={if(n>=2, 4!*n*(n-1)*abs(stirling(n-2,4,1)), 0)} \\ Andrew Howroyd, Aug 08 2020

Formula

E.g.f.: x^2*log(-1/(-1+x))^4.
Recurrence: {a(1)=0, a(2)=0, a(4)=0, a(3)=0, a(5)=0, a(6)=720, (32*n-464*n^2-21*n^6-22*n^5+48*n^3+n^8+2*n^7+384+160*n^4)*a(n) + (105*n^4-360-14*n^6-121*n^2-4*n^7+642*n-296*n^3+48*n^5)*a(n+1) + (-84*n+24*n^5+179*n^2+6*n^6-35*n^4-90*n^3)*a(n+2) + (14*n^2+12*n^3-8*n-14*n^4-4*n^5)*a(n+3) + (-n^2+n^4-2*n+2*n^3)*a(n+4)}.
a(n) = n*A052770(n-1) = 4!*n*(n-1)*abs(Stirling1(n-2,4)) for n >= 2. - Andrew Howroyd, Aug 08 2020

Extensions

Name changed and terms a(20) and beyond from Andrew Howroyd, Aug 08 2020
Showing 1-3 of 3 results.