A052829 A simple grammar: partial sums of A052870.
0, 1, 2, 4, 10, 25, 69, 197, 583, 1762, 5441, 17042, 54072, 173334, 560659, 1827306, 5995570, 19787135, 65643226, 218777532, 732181107, 2459576149, 8290442750, 28031056619, 95045477945, 323112137130, 1101073839413, 3760472582922, 12869488098939, 44127605854574
Offset: 0
Links
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 794
Crossrefs
Cf. A052870 (first differences).
Programs
-
Maple
spec := [S,{B=Sequence(Z,1 <= card),C=PowerSet(S),S=Prod(C,B)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
Formula
G.f.: (x/(1-x))*Product_{k>=1} (1+x^k)^a(k). - Vladeta Jovovic, Jul 22 2004
G.f. A(x) satisfies: A(x) = (x/(1 - x)) * exp(Sum_{k>=1} (-1)^(k+1) * A(x^k) / k). - Ilya Gutkovskiy, Jun 28 2021
Extensions
More terms from Alois P. Heinz, Mar 16 2016