A052848 Number of ordered set partitions with a designated element in each block and no block containing less than two elements.
1, 0, 2, 3, 28, 125, 1146, 8827, 94200, 1007001, 12814390, 172114151, 2584755636, 41436880069, 721702509906, 13397081295795, 266105607506416, 5605474012933169, 125164378600050798, 2948082261121889983, 73122068527848758700, 1903894649651935410141
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..434
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 816
Crossrefs
Cf. A000296.
Programs
-
Maple
spec := [S,{B=Prod(Z,C),C=Set(Z,1 <= card),S=Sequence(B)},labeled]: seq(combstruct[count](spec, size=n), n=0..20); # second Maple program: a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*binomial(n, j)*j, j=2..n)) end: seq(a(n), n=0..25); # Alois P. Heinz, May 11 2016
-
Mathematica
nn=20; a=x Exp[x]; First[Range[0,nn]! CoefficientList[Series[1/(1-x (Exp[x]-1+y)), {x,0,nn}], {y,x}]] Range[0,nn]! (* Geoffrey Critzer, Dec 07 2012 *)
-
Maxima
a(n):=n!*sum((k!*stirling2(n-k,k))/(n-k)!,k,0,n/2); /* Vladimir Kruchinin, Nov 16 2011 */
Formula
E.g.f.: -1/(-1+x*exp(x)-x).
a(n) = n!*Sum_{k=0..floor(n/2)} k!*Stirling2(n-k,k)/(n-k)!. - Vladimir Kruchinin, Nov 16 2011
a(n) ~ n!/(1+r+r^2) * r^(n+2), where r = 1.23997788765655... is the root of the equation log(1+r)=1/r. - Vaclav Kotesovec, Oct 05 2013
a(0) = 1; a(n) = n * Sum_{k=2..n} binomial(n-1,k-1) * a(n-k). - Seiichi Manyama, Dec 04 2023
Extensions
Better name from Geoffrey Critzer, Dec 10 2012
Comments