cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052852 Expansion of e.g.f.: (x/(1-x))*exp(x/(1-x)).

Original entry on oeis.org

0, 1, 4, 21, 136, 1045, 9276, 93289, 1047376, 12975561, 175721140, 2581284541, 40864292184, 693347907421, 12548540320876, 241253367679185, 4909234733857696, 105394372192969489, 2380337795595885156, 56410454014314490981, 1399496554158060983080
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

A simple grammar.
Number of {121,212}-avoiding n-ary words of length n. - Ralf Stephan, Apr 20 2004
The infinite continued fraction (1+n)/(1+(2+n)/(2+(3+n)/(3+...))) converges to the rational number A052852(n)/A000262(n) when n is a positive integer. - David Angell (angell(AT)maths.unsw.edu.au), Dec 18 2008
a(n) is the total number of components summed over all nilpotent partial permutations of [n]. - Geoffrey Critzer, Feb 19 2022

Crossrefs

Row sums of unsigned triangle A062139 (generalized a=2 Laguerre).

Programs

  • Magma
    [n eq 0 select 0 else Factorial(n)*Evaluate(LaguerrePolynomial(n-1, 0), -1): n in [0..30]]; // G. C. Greubel, Feb 23 2021
  • Maple
    spec := [S,{B=Set(C),C=Sequence(Z,1 <= card),S=Prod(B,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
    a := n -> ifelse(n = 0, 0, n!*hypergeom([-n+1], [1], -1)): seq(simplify(a(n)), n = 0..18);  # Peter Luschny, Dec 30 2024
  • Mathematica
    Table[n!*SeriesCoefficient[(x/(1-x))*E^(x/(1-x)),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 09 2012 *)
    Table[If[n==0, 0, n!*LaguerreL[n-1, 0, -1]], {n, 0, 30}] (* G. C. Greubel, Feb 23 2021 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(serlaplace((x/(1-x))*exp(x/(1-x))))) \\ G. C. Greubel, May 15 2018
    
  • Sage
    [0 if n==0 else factorial(n)*gen_laguerre(n-1, 0, -1) for n in (0..30)] # G. C. Greubel, Feb 23 2021
    

Formula

D-finite with recurrence: a(1)=1, a(0)=0, (n^2+2*n)*a(n)+(-4-2*n)*a(n+1)+ a(n+2)=0.
a(n) = Sum_{m=0..n} n!*binomial(n+2, n-m)/m!. - Wolfdieter Lang, Jun 19 2001
a(n) = n*A002720(n-1). [Riordan] - Vladeta Jovovic, Mar 18 2005
Related to an n-dimensional series: for n>=1, a(n) = (n!/e)*Sum_{k_n>=k_{n-1}>=...>=k_1>=0} 1/(k_n)!. - Benoit Cloitre, Sep 30 2006
E.g.f.: (x/(1-x))*exp((x/(1-x))) = (x/(1-x))*G(0); G(k)=1+x/((2*k+1)*(1-x)-x*(1-x)*(2*k+1)/(x+(1-x)*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 24 2011
a(n) = D^n(x*exp(x)) evaluated at x = 0, where D is the operator (1+x)^2*d/dx. Cf. A000262 and A005493. - Peter Bala, Nov 25 2011
a(n) ~ exp(2*sqrt(n)-n-1/2)*n^(n+1/4)/sqrt(2). - Vaclav Kotesovec, Oct 09 2012
a(n) = n!*hypergeom([-n+1], [1], -1) for n>=1. - Peter Luschny, Oct 18 2014 [Simplified by Natalia L. Skirrow, 30 December 2024]
a(n) = Sum_{k=0..n} L(n,k)*k; L(n,k) the unsigned Lah numbers. - Peter Luschny, Oct 18 2014
a(n) = n!*LaguerreL(n-1, 0, -1) for n>=1. - Peter Luschny, Apr 08 2015, simplified Dec 30 2024
The series reversion of the e.g.f. equals W(x)/(1 + W(x)) = x - 2^2*x^2/2! + 3^3*x^3/3! - 4^4*x^4/4! + ..., essentially the e.g.f. for a signed version of A000312, where W(x) is Lambert's W-function (see A000169). - Peter Bala, Jun 14 2016
Equals column A059114(n, 2) for n >= 1. - G. C. Greubel, Feb 23 2021
a(n) = Sum_{k=1..n} k * A271703(n,k). - Geoffrey Critzer, Feb 19 2022