A052859 Expansion of e.g.f.: exp(exp(2*x) - 2*exp(x) + 1).
1, 0, 2, 6, 26, 150, 962, 6846, 54266, 471750, 4439762, 44911086, 485570186, 5581383990, 67890295202, 870493380126, 11726471352986, 165475293394470, 2439632685738482, 37491028556508366, 599285435979866666, 9945441791592272790, 171062503783616702402
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 827
- Vaclav Kotesovec, Asymptotics for a certain group of exponential generating functions, arXiv:2207.10568 [math.CO], Jul 13 2022 (set m=1, b=2, r=-2, d=1, s=1).
- Vaclav Kotesovec, Graph - the asymptotic ratio (10000 terms)
Programs
-
Maple
spec := [S,{B=Prod(C,C),C=Set(Z,1 <= card),S=Set(B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20); # second Maple program: a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j) *2*binomial(n-1, j-1)*Stirling2(j, 2), j=1..n)) end: seq(a(n), n=0..25); # Alois P. Heinz, Sep 02 2019
-
Mathematica
nn=20; a=Exp[x]-1; Range[0,nn]! CoefficientList[Series[Exp[a^2], {x,0,nn}], x] (* Geoffrey Critzer, Jan 20 2012 *) Table[Sum[BellY[n, k, 2^Range[n] - 2], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *) Table[Sum[(2*k)!*StirlingS2[n, 2*k]/k!, {k, 0, n/2}], {n, 0, 25}] (* Vaclav Kotesovec, Oct 04 2022 *)
-
PARI
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (2*k)!*x^(2*k)/(k!*prod(j=1, 2*k, 1-j*x)))) \\ Seiichi Manyama, May 07 2022
-
PARI
a(n) = sum(k=0, n\2, (2*k)!*stirling(n, 2*k, 2)/k!); \\ Seiichi Manyama, May 07 2022
Formula
E.g.f.: exp(exp(x)^2-2*exp(x)+1).
Stirling transform of unsigned Hermite numbers: Sum_{k=0..n} Stirling2(n, k)*|HermiteH(k, 0)|. - Vladeta Jovovic, Sep 12 2003
From Seiichi Manyama, May 07 2022: (Start)
G.f.: Sum_{k>=0} (2*k)! * x^(2*k)/(k! * Product_{j=1..2*k} (1 - j * x)).
a(n) = Sum_{k=0..floor(n/2)} (2*k)! * Stirling2(n,2*k)/k!. (End)
a(n) ~ 2^n * exp(1/2 - n - 2*sqrt(n/LambertW(n)) + n/LambertW(n)) * n^n / (sqrt(1 + LambertW(n)) * LambertW(n)^n). - Vaclav Kotesovec, Oct 04 2022
Extensions
New name using e.g.f. from Vaclav Kotesovec, Oct 04 2022
Comments