A052888 E.g.f. is series reversion of log(1+x)*exp(-x).
0, 1, 3, 19, 189, 2576, 44683, 941977, 23388025, 668520163, 21622993111, 780789908240, 31135480907413, 1358965445353621, 64440211018897379, 3298807094967155971, 181322497435007616497, 10651131815012588324380, 665881649529214120845679, 44144097851022253967955749
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..368
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 863
- Rosena R. X. Du and Fu Liu, Pure-cycle Hurwitz factorizations and multi-noded rooted trees, arXiv:1008.3677 [math.CO], 2010-2013.
- Gus Wiseman, All 189 tail-trees of weight 4.
- Gus Wiseman, Set maps, umbral calculus, and the chromatic polynomial, Discrete Math., 308(16):3551-3564, 2008.
Programs
-
Maple
spec := [S,{C=Prod(Z,B),B=Set(S),S=Set(C,1 <= card)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
Table[Sum[StirlingS2[n,k]*n^(k-1),{k,1,n}],{n,0,20}] (* Vaclav Kotesovec, Jan 22 2014 *)
-
PARI
for(n=0,30, print1(sum(k=1,n, stirling(n,k,2)*n^(k-1)), ", ")) \\ G. C. Greubel, Nov 17 2017
Formula
E.g.f.: RootOf(_Z-exp(exp(_Z)*x)+1)
a(n) = Sum_{k=1..n} Stirling2(n, k)*n^(k-1). - Vladeta Jovovic, Jul 26 2005
a(n) = exp(-n)*Sum_{k>=1} n^(k-1)*k^n/k!. - Vladeta Jovovic, Jul 03 2006 [corrected by Ilya Gutkovskiy, Apr 20 2020]
a(n) ~ exp(n*(LambertW(1) + 1/LambertW(1) - 2)) * n^(n-1) / sqrt(1+LambertW(1)). - Vaclav Kotesovec, Jan 22 2014
Comments