cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 32 results. Next

A030019 Number of labeled spanning trees in the complete hypergraph on n vertices (all hyperedges having cardinality 2 or greater).

Original entry on oeis.org

1, 1, 1, 4, 29, 311, 4447, 79745, 1722681, 43578820, 1264185051, 41381702275, 1509114454597, 60681141052273, 2667370764248023, 127258109992533616, 6549338612837162225, 361680134713529977507, 21333858798449021030515, 1338681172839439064846881
Offset: 0

Views

Author

David Warme (warme(AT)s3i.com)

Keywords

Comments

Equivalently, this is the number of "hypertrees" on n labeled nodes, i.e. connected hypergraphs that have no cycles, assuming that each edge contains at least two vertices. - Don Knuth, Jan 26 2008. See A134954 for hyperforests.
Also number of labeled connected graphs where every block is a complete graph (cf. A035053).
Let H = (V,E) be the complete hypergraph on N labeled vertices (all edges having cardinality 2 or greater). Let e in E and K = |e|. Then the number of distinct spanning trees of H that contain edge e is g(N,K) = K * E[X_N^{N-K}] / N and the K=1 case gives this sequence. Clearly there is some deep structural connection between spanning trees in hypergraphs and Poisson moments.

References

  • Warren D. Smith and David Warme, Paper in preparation, 2002.

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[ StirlingS2[n-1, i]*n^(i-1), {i, 0, n-1}]; a[0] = 1; Table[a[n], {n, 0, 18}](* Jean-François Alcover, Sep 12 2012, from 2nd formula *)
  • PARI
    {a(n)=if(n==0,1,(n-1)!*polcoeff(1-sum(k=0, n-2, a(k+1)*x^k/k!*exp(-(k+1)*(exp(x+O(x^n))-1))), n-1))} /* Paul D. Hanna */
    
  • PARI
    /* E.g.f. of sequence shifted left one place: */
    {a(n)=local(A=1+x); for(i=1, n, A=exp(-1)*sum(m=0, 2*n+10, exp(m*x*A+x*O(x^n))/m!)); round(n!*polcoeff(A, n))} /* Paul D. Hanna */

Formula

a(n) = A035051(n)/n for n > 0.
a(n) = Sum_{i=0...n-1} Stirling2(n-1, i) n^(i-1), n >= 1. (Warme, Corollary 3.15.1, p. 59)
a(n) = E[X_n^{n-1}] / n, n >= 1, where X_n is a Poisson random variable with mean n.
1 = Sum_{n>=0} a(n+1) * x^n/n! * exp( -(n+1)*(exp(x)-1) ). - Paul D. Hanna, Jun 11 2011
E.g.f. satisfies: A(x) = Sum_{n>=0} exp(n*x*A(x)-1)/n! = Sum_{n>=0} a(n+1)*x^n/n!. - Paul D. Hanna, Sep 25 2011
Dobinski-type formula: a(n) = 1/e^n*sum {k = 0..inf} n^(k-1)*k^(n-1)/k!. Cf. A052888. For a refinement of this sequence see A210587. - Peter Bala, Apr 05 2012
a(n) ~ n^(n-2) / (sqrt(1+LambertW(1)) * (LambertW(1))^(n-1) * exp((2-1/LambertW(1))*n)). - Vaclav Kotesovec, Jul 26 2014

Extensions

More terms, formula and comment from Christian G. Bower Dec 15 1999

A275307 Number of labeled spanning blobs on n vertices.

Original entry on oeis.org

1, 1, 2, 44, 4983, 7565342, 2414249587694, 56130437054842366160898
Offset: 1

Views

Author

Gus Wiseman, Jul 22 2016

Keywords

Comments

A clutter is a set of sets comprising a connected antichain in the Boolean algebra B_n. A blob is defined as a clutter that cannot be capped by a tree.

Examples

			The a(3)=2 blobs are: {{1,2,3}}, {{1,2},{1,3},{2,3}}.
		

Crossrefs

Cf. A048143 (clutters), A030019 (hypertrees), A052888 (tail trees).

Formula

Every clutter is a tree of blobs, so we have A048143(n) = Sum_p n^(k-1) Prod_i a(|p_i|+1), where the sum is over all set partitions U(p_1,...,p_k) = {1,...,n-1}.

A321155 Regular triangle where T(n,k) is the number of non-isomorphic connected multiset partitions of weight n with density -1 <= k < n-2.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 6, 6, 4, 1, 10, 14, 11, 4, 1, 22, 38, 38, 20, 6, 1, 42, 94, 111, 72, 28, 6, 1, 94, 250, 348, 278, 138, 42, 8, 1, 203, 648, 1044, 992, 596, 226, 56, 8, 1, 470, 1728, 3192, 3538, 2536, 1192, 370, 76, 10, 1
Offset: 1

Views

Author

Gus Wiseman, Oct 29 2018

Keywords

Comments

The density of a multiset partition of weight n with e parts and v vertices is n - e - v. The weight of a multiset partition is the sum of sizes of its parts.

Examples

			Triangle begins:
    1
    2    1
    3    2    1
    6    6    4    1
   10   14   11    4    1
   22   38   38   20    6    1
   42   94  111   72   28    6    1
   94  250  348  278  138   42    8    1
  203  648 1044  992  596  226   56    8    1
  470 1728 3192 3538 2536 1192  370   76   10    1
Non-isomorphic representatives of the connected multiset partitions counted in row 5:
{1,2,3,4,5}         {1,2,3,4,4}       {1,2,2,3,3}     {1,1,2,2,2}   {1,1,1,1,1}
{1,4},{2,3,4}       {1,2},{2,3,3}     {1,2,3,3,3}     {1,2,2,2,2}
{4},{1,2,3,4}       {1,3},{2,3,3}     {1,1},{1,2,2}   {1},{1,1,1,1}
{2},{1,3},{2,3}     {2},{1,2,3,3}     {1},{1,2,2,2}   {1,1},{1,1,1}
{2},{3},{1,2,3}     {2,3},{1,2,3}     {1,2},{1,2,2}
{3},{1,3},{2,3}     {3},{1,2,3,3}     {1,2},{2,2,2}
{3},{3},{1,2,3}     {3,3},{1,2,3}     {2},{1,1,2,2}
{1},{2},{2},{1,2}   {1},{1},{1,2,2}   {2},{1,2,2,2}
{2},{2},{2},{1,2}   {1},{1,2},{2,2}   {2,2},{1,2,2}
{1},{1},{1},{1},{1} {1},{2},{1,2,2}   {1},{1},{1,1,1}
                    {2},{1,2},{1,2}   {1},{1,1},{1,1}
                    {2},{1,2},{2,2}
                    {2},{2},{1,2,2}
                    {1},{1},{1},{1,1}
		

Crossrefs

First column is A125702. Row sums are A007718.

A326752 BII-numbers of hypertrees.

Original entry on oeis.org

0, 1, 2, 4, 8, 16, 20, 32, 36, 48, 64, 128, 256, 260, 272, 276, 292, 304, 320, 512, 516, 532, 544, 548, 560, 576, 768, 784, 800, 1024, 1040, 1056, 2048, 2064, 2068, 2080, 2084, 2096, 2112, 2304, 2308, 2336, 2560, 2564, 2576, 2816, 3072, 4096, 4100, 4128, 4608
Offset: 1

Views

Author

Gus Wiseman, Jul 23 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.
Elements of a set-system are sometimes called edges. In an antichain, no edge is a subset or superset of any other edge. A hypertree is a connected antichain of nonempty sets with density -1, where density is the sum of sizes of the edges minus the number of edges minus the number of vertices.

Examples

			The sequence of all hypertrees together with their BII-numbers begins:
    0: {}
    1: {{1}}
    2: {{2}}
    4: {{1,2}}
    8: {{3}}
   16: {{1,3}}
   20: {{1,2},{1,3}}
   32: {{2,3}}
   36: {{1,2},{2,3}}
   48: {{1,3},{2,3}}
   64: {{1,2,3}}
  128: {{4}}
  256: {{1,4}}
  260: {{1,2},{1,4}}
  272: {{1,3},{1,4}}
  276: {{1,2},{1,3},{1,4}}
  292: {{1,2},{2,3},{1,4}}
  304: {{1,3},{2,3},{1,4}}
  320: {{1,2,3},{1,4}}
		

Crossrefs

Other BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326751 (blobs), A326754 (covers).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    density[c_]:=Total[(Length[#1]-1&)/@c]-Length[Union@@c];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Select[Range[0,1000],#==0||stableQ[bpe/@bpe[#],SubsetQ]&&Length[csm[bpe/@bpe[#]]]<=1&&density[bpe/@bpe[#]]==-1&]

A309314 BII-numbers of hyperforests.

Original entry on oeis.org

0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 16, 18, 20, 32, 33, 36, 48, 64, 128, 129, 130, 131, 132, 136, 137, 138, 139, 140, 144, 146, 148, 160, 161, 164, 176, 192, 256, 258, 260, 264, 266, 268, 272, 274, 276, 288, 292, 304, 320, 512, 513, 516, 520, 521, 524, 528, 532
Offset: 1

Views

Author

Gus Wiseman, Jul 23 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.
Elements of a set-system are sometimes called edges. In an antichain, no edge is a subset or superset of any other edge. A hyperforest is an antichain of nonempty sets whose connected components are hypertrees, meaning they have density -1, where density is the sum of sizes of the edges minus the number of edges minus the number of vertices.

Examples

			The sequence of all hyperforests together with their BII-numbers begins:
    0: {}
    1: {{1}}
    2: {{2}}
    3: {{1},{2}}
    4: {{1,2}}
    8: {{3}}
    9: {{1},{3}}
   10: {{2},{3}}
   11: {{1},{2},{3}}
   12: {{1,2},{3}}
   16: {{1,3}}
   18: {{2},{1,3}}
   20: {{1,2},{1,3}}
   32: {{2,3}}
   33: {{1},{2,3}}
   36: {{1,2},{2,3}}
   48: {{1,3},{2,3}}
   64: {{1,2,3}}
  128: {{4}}
  129: {{1},{4}}
  130: {{2},{4}}
  131: {{1},{2},{4}}
  132: {{1,2},{4}}
  136: {{3},{4}}
  137: {{1},{3},{4}}
		

Crossrefs

Other BII-numbers: A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers).

A321229 Number of non-isomorphic connected weight-n multiset partitions with multiset density -1.

Original entry on oeis.org

1, 1, 3, 6, 16, 37, 105, 279, 817, 2387, 7269
Offset: 0

Views

Author

Gus Wiseman, Oct 31 2018

Keywords

Comments

The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 37 multiset partitions:
  {{1}}  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}        {{1,1,1,1,1}}
         {{1,2}}    {{1,2,2}}      {{1,1,2,2}}        {{1,1,2,2,2}}
         {{1},{1}}  {{1,2,3}}      {{1,2,2,2}}        {{1,2,2,2,2}}
                    {{1},{1,1}}    {{1,2,3,3}}        {{1,2,2,3,3}}
                    {{2},{1,2}}    {{1,2,3,4}}        {{1,2,3,3,3}}
                    {{1},{1},{1}}  {{1},{1,1,1}}      {{1,2,3,4,4}}
                                   {{1,1},{1,1}}      {{1,2,3,4,5}}
                                   {{1},{1,2,2}}      {{1},{1,1,1,1}}
                                   {{1,2},{2,2}}      {{1,1},{1,1,1}}
                                   {{1,3},{2,3}}      {{1,1},{1,2,2}}
                                   {{2},{1,2,2}}      {{1},{1,2,2,2}}
                                   {{3},{1,2,3}}      {{1,2},{2,2,2}}
                                   {{1},{1},{1,1}}    {{1,2},{2,3,3}}
                                   {{1},{2},{1,2}}    {{1,3},{2,3,3}}
                                   {{2},{2},{1,2}}    {{1,4},{2,3,4}}
                                   {{1},{1},{1},{1}}  {{2},{1,1,2,2}}
                                                      {{2},{1,2,2,2}}
                                                      {{2},{1,2,3,3}}
                                                      {{2,2},{1,2,2}}
                                                      {{3},{1,2,3,3}}
                                                      {{3,3},{1,2,3}}
                                                      {{4},{1,2,3,4}}
                                                      {{1},{1},{1,1,1}}
                                                      {{1},{1,1},{1,1}}
                                                      {{1},{1},{1,2,2}}
                                                      {{1},{1,2},{2,2}}
                                                      {{1},{2},{1,2,2}}
                                                      {{2},{1,2},{2,2}}
                                                      {{2},{1,3},{2,3}}
                                                      {{2},{2},{1,2,2}}
                                                      {{2},{3},{1,2,3}}
                                                      {{3},{1,3},{2,3}}
                                                      {{3},{3},{1,2,3}}
                                                      {{1},{1},{1},{1,1}}
                                                      {{1},{2},{2},{1,2}}
                                                      {{2},{2},{2},{1,2}}
                                                      {{1},{1},{1},{1},{1}}
		

Crossrefs

A035051 Number of labeled rooted connected graphs where every block is a complete graph.

Original entry on oeis.org

0, 1, 2, 12, 116, 1555, 26682, 558215, 13781448, 392209380, 12641850510, 455198725025, 18109373455164, 788854833679549, 37343190699472322, 1908871649888004240, 104789417805394595600, 6148562290130009617619
Offset: 0

Views

Author

Christian G. Bower, Oct 15 1998

Keywords

Comments

Equivalently, rooted labeled spanning trees in the complete hypergraph on n vertices (all hyperedges having cardinality 2 or greater).

References

  • Warren D. Smith and David Warme, Paper in preparation, 2002.

Crossrefs

Programs

  • Mathematica
    f[n_] := Sum[ n^i*StirlingS2[n - 1, i], {i, 0, n - 1}]; Array[f, 18, 0] (* Robert G. Wilson v, Apr 05 2012 *)
    Table[If[n == 0, 0, BellB[n - 1, n]], {n, 0, 100}] (* Emanuele Munarini, May 23 2014 *)
  • Maxima
    a(n):=if n=0 then 0 else sum(stirling2(n-1,k)*n^k,k,0,n);
    makelist(a(n),n,0,12); /* Emanuele Munarini, May 23 2014 */
    
  • PARI
    for(n=0,30, print1(sum(k=0,n-1, stirling(n-1,k,2)*n^k), ", ")) \\ G. C. Greubel, Nov 17 2017

Formula

Recurrence: a(1) = 1, a(n) = Sum_{k=1}^{n-1} Bell(k) / k! Sum_{a_j > 0, Sum_{j=1}^k a_j = n-1} {{n-1} choose {a_1, a_2, ..., a_k }} \prod_{j=1}^k a(a_j) for n > 1, where Bell(k) = A000110(k). - Warren D. Smith, Feb 23 1998
a(n) = Sum_{i=0...n-1} S(n-1, i) n^i, where S(N, M) are Stirling numbers of the second kind - David Warme, Mar 25 1998
E.g.f. satisfies A(x)=x*exp(exp(A(x))-1).
Let X_{mu} be a Poisson random variable with mean mu: P(X_{mu} = K) = e^{-mu} mu^K / K!. The n-th moment of X_{mu} is E[X_{mu}^n] = sum_{i=0}^n S(n, i) mu^i. Therefore a(n) = E[X_n^{n-1}]. - Langworth Withers, May 25 2000
Dobinski-type formula: a(n) = 1/e^n*sum {k = 0..inf} n^k*k^(n-1)/k!. Cf. A030019 and A052888. For a refinement of this sequence see A210586. - Peter Bala, Apr 05 2012
a(n) ~ exp((1/LambertW(1)-2)*n) * n^(n-1) / (sqrt(1+LambertW(1)) * LambertW(1)^(n-1)). - Vaclav Kotesovec, Jan 22 2014

A320444 Number of uniform hypertrees spanning n vertices.

Original entry on oeis.org

1, 1, 1, 4, 17, 141, 1297, 17683, 262145, 4861405, 100112001, 2371816701, 61917364225, 1796326510993, 56693912375297, 1947734359001551, 72059082110369793, 2863257607266475419, 121439531096594251777, 5480987217944109919765, 262144000000000000000001
Offset: 0

Views

Author

Gus Wiseman, Jan 09 2019

Keywords

Comments

The density of a hypergraph is the sum of sizes of its edges minus the number of edges minus the number of vertices. A hypertree is a connected hypergraph of density -1. A hypergraph is uniform if its edges all have the same size. The span of a hypergraph is the union of its edges.

Examples

			Non-isomorphic representatives of the 5 unlabeled uniform hypertrees on 5 vertices and their multiplicities in the labeled case, which add up to a(5) = 141:
   5 X {{1,5},{2,5},{3,5},{4,5}}
  60 X {{1,4},{2,5},{3,5},{4,5}}
  60 X {{1,3},{2,4},{3,5},{4,5}}
  15 X {{1,2,5},{3,4,5}}
   1 X {{1,2,3,4,5}}
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local d; add((n-1)!/(d! * ((n-1)/d)!) * (n/d)^((n-1)/d - 1), d = numtheory:-divisors(n-1)); end proc:
    f(0):= 1: f(1):= 1:
    map(f, [$0..25]); # Robert Israel, Jan 10 2019
  • Mathematica
    Table[Sum[n!/(d!*(n/d)!)*((n+1)/d)^(n/d-1),{d,Divisors[n]}],{n,10}]
  • PARI
    a(n) = if (n<2, 1, n--; sumdiv(n, d, n!/(d! * (n/d)!) * ((n + 1)/d)^(n/d - 1))); \\ Michel Marcus, Jan 10 2019

Formula

a(n + 1) = Sum_{d|n} n!/(d! * (n/d)!) * ((n + 1)/d)^(n/d - 1).
a(p prime) = 1 + (p + 1)^(p - 1).

A125702 Number of connected categories with n objects and 2n-1 morphisms.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 22, 42, 94, 203, 470, 1082, 2602, 6270, 15482, 38525, 97258, 247448, 635910, 1645411, 4289010, 11245670, 29656148, 78595028, 209273780, 559574414, 1502130920, 4046853091, 10939133170, 29661655793
Offset: 1

Views

Author

Keywords

Comments

Also number of connected antitransitive relations on n objects (antitransitive meaning a R b and b R c implies not a R c); equivalently, number of free oriented bipartite trees, with all arrows going from one part to the other part.
Also the number of non-isomorphic multi-hypertrees of weight n - 1 with singletons allowed. A multi-hypertree with singletons allowed is a connected set multipartition (multiset of sets) with density -1, where the density of a set multipartition is the weight (sum of sizes of the parts) minus the number of parts minus the number of vertices. - Gus Wiseman, Oct 30 2018

Examples

			From _Gus Wiseman_, Oct 30 2018: (Start)
Non-isomorphic representatives of the a(1) = 1 through a(6) = 10 multi-hypertrees of weight n - 1 with singletons allowed:
  {}  {{1}}  {{12}}    {{123}}      {{1234}}        {{12345}}
             {{1}{1}}  {{2}{12}}    {{13}{23}}      {{14}{234}}
                       {{1}{1}{1}}  {{3}{123}}      {{4}{1234}}
                                    {{1}{2}{12}}    {{2}{13}{23}}
                                    {{2}{2}{12}}    {{2}{3}{123}}
                                    {{1}{1}{1}{1}}  {{3}{13}{23}}
                                                    {{3}{3}{123}}
                                                    {{1}{2}{2}{12}}
                                                    {{2}{2}{2}{12}}
                                                    {{1}{1}{1}{1}{1}}
(End)
		

Crossrefs

Same as A122086 except for n = 1; see there for formulas. Cf. A125699.

Programs

  • PARI
    \\ TreeGf gives gf of A000081.
    TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    seq(n)={Vec(2*TreeGf(n) - TreeGf(n)^2 - x)} \\ Andrew Howroyd, Nov 02 2019

Formula

a(n) = A122086(n) for n > 1.
G.f.: 2*f(x) - f(x)^2 - x where f(x) is the g.f. of A000081. - Andrew Howroyd, Nov 02 2019

A321228 Number of non-isomorphic hypertrees of weight n with singletons.

Original entry on oeis.org

1, 1, 1, 2, 4, 6, 13, 23, 49, 100, 220
Offset: 0

Views

Author

Gus Wiseman, Oct 31 2018

Keywords

Comments

A hypertree with singletons is a connected set system (finite set of finite nonempty sets) with density -1, where the density of a set system is the sum of sizes of the parts (weight) minus the number of parts minus the number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(7) = 23 hypertrees:
  {{1}}  {{1,2}}  {{1,2,3}}    {{1,2,3,4}}      {{1,2,3,4,5}}
                  {{2},{1,2}}  {{1,3},{2,3}}    {{1,4},{2,3,4}}
                               {{3},{1,2,3}}    {{4},{1,2,3,4}}
                               {{1},{2},{1,2}}  {{2},{1,3},{2,3}}
                                                {{2},{3},{1,2,3}}
                                                {{3},{1,3},{2,3}}
.
  {{1,2,3,4,5,6}}        {{1,2,3,4,5,6,7}}
  {{1,2,5},{3,4,5}}      {{1,2,6},{3,4,5,6}}
  {{1,5},{2,3,4,5}}      {{1,6},{2,3,4,5,6}}
  {{5},{1,2,3,4,5}}      {{6},{1,2,3,4,5,6}}
  {{1},{1,4},{2,3,4}}    {{1},{1,5},{2,3,4,5}}
  {{1,3},{2,4},{3,4}}    {{1,2},{2,5},{3,4,5}}
  {{1,4},{2,4},{3,4}}    {{1,4},{2,5},{3,4,5}}
  {{3},{1,4},{2,3,4}}    {{1,5},{2,5},{3,4,5}}
  {{3},{4},{1,2,3,4}}    {{4},{1,2,5},{3,4,5}}
  {{4},{1,4},{2,3,4}}    {{4},{1,5},{2,3,4,5}}
  {{1},{2},{1,3},{2,3}}  {{4},{5},{1,2,3,4,5}}
  {{1},{2},{3},{1,2,3}}  {{5},{1,2,5},{3,4,5}}
  {{2},{3},{1,3},{2,3}}  {{5},{1,5},{2,3,4,5}}
                         {{1},{3},{1,4},{2,3,4}}
                         {{1},{4},{1,4},{2,3,4}}
                         {{2},{1,3},{2,4},{3,4}}
                         {{2},{3},{1,4},{2,3,4}}
                         {{2},{3},{4},{1,2,3,4}}
                         {{3},{1,4},{2,4},{3,4}}
                         {{3},{4},{1,4},{2,3,4}}
                         {{4},{1,3},{2,4},{3,4}}
                         {{4},{1,4},{2,4},{3,4}}
                         {{1},{2},{3},{1,3},{2,3}}
		

Crossrefs

Showing 1-10 of 32 results. Next