A052895 E.g.f.: (1/2)/(exp(x) - 1) * (1 - (5 - 4*exp(x))^(1/2)).
1, 1, 5, 43, 545, 9211, 195305, 4990483, 149371745, 5128125451, 198696086105, 8578228640323, 408387804764945, 21256203702751291, 1200890923560864905, 73191086773679576563, 4786857909878612350145, 334410103752029126714731
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 871
Programs
-
Maple
spec := [S,{C=Set(Z,1 <= card),S=Sequence(B),B=Prod(C,S)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
CoefficientList[Series[(1/2)/(E^x-1)*(1-(5-4*E^x)^(1/2)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *) a[n_] = Sum[k! StirlingS2[n, k] CatalanNumber[k], {k, 0, n}]; Table[a[n], {n, 0, 17}] (* Peter Luschny, Jan 15 2018 *)
Formula
E.g.f.: (1/2)/(exp(x) - 1)*(1 - (5 - 4*exp(x))^(1/2)).
a(n) = Sum_{k=0..n} k!*Stirling2(n,k)*Catalan(k). - Vladimir Kruchinin, Sep 15 2010
a(n) ~ sqrt(10)*n^(n-1) / (exp(n)*(log(5/4))^(n-1/2)). - Vaclav Kotesovec, Sep 30 2013
E.g.f.: 1/(1 + (1 - exp(x))/(1 + (1 - exp(x))/(1 + (1 - exp(x))/(1 + (1 - exp(x))/(1 + ...))))), a continued fraction. - Ilya Gutkovskiy, Nov 18 2017
From Peter Bala, Jan 15 2018: (Start)
E.g.f.: C(exp(x) - 1), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for A000108. Cf. A006531.
Conjecture: for fixed k = 1,2,..., the sequence a(n) (mod k) is eventually periodic with the exact period dividing phi(k), where phi(k) is the Euler totient function A000010. For example, modulo 10 the sequence becomes (1, 1, 5, 3, 5, 1, 5, 3, 5, ...), with an apparent period 1, 5, 3, 5 of length 4 = phi(10) beginning at a(1). (End)
O.g.f.: 1 + Sum_{k>=1} A000108(k)*Product_{r=1..k} r*x/(1 - r*x). - Petros Hadjicostas, Jun 12 2020
Extensions
New name using e.g.f. from Vaclav Kotesovec, Sep 30 2013
Comments