cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A387476 a(n) = Sum_{k=0..floor(n/2)} 2^k * binomial(k,n-2*k)^2.

Original entry on oeis.org

1, 0, 2, 2, 4, 16, 12, 72, 88, 264, 608, 1056, 3280, 5504, 15328, 31904, 71104, 175488, 358080, 900736, 1925248, 4518016, 10404864, 23138304, 54970624, 122038272, 286077440, 651510272, 1492685824, 3465687040, 7876488192, 18322630656, 41904609280, 96788580352, 223335882752
Offset: 0

Views

Author

Seiichi Manyama, Aug 30 2025

Keywords

Crossrefs

Programs

  • Magma
    [(&+[2^k * Binomial(k,n-2*k)^2: k in [0..Floor(n/2)]]): n in [0..40]]; // Vincenzo Librandi, Aug 31 2025
  • Mathematica
    Table[Sum[2^k* Binomial[k,n-2*k]^2,{k,0,Floor[n/2]}],{n,0,40}] (* Vincenzo Librandi, Aug 31 2025 *)
  • PARI
    a(n) = sum(k=0, n\2, 2^k*binomial(k, n-2*k)^2);
    

Formula

G.f.: 1/sqrt((1-2*x^2-2*x^3)^2 - 16*x^5).

A099040 Riordan array (1, 2+2x).

Original entry on oeis.org

1, 0, 2, 0, 2, 4, 0, 0, 8, 8, 0, 0, 4, 24, 16, 0, 0, 0, 24, 64, 32, 0, 0, 0, 8, 96, 160, 64, 0, 0, 0, 0, 64, 320, 384, 128, 0, 0, 0, 0, 16, 320, 960, 896, 256, 0, 0, 0, 0, 0, 160, 1280, 2688, 2048, 512, 0, 0, 0, 0, 0, 32, 960, 4480, 7168, 4608, 1024, 0, 0, 0, 0, 0, 0, 384, 4480, 14336, 18432, 10240, 2048
Offset: 0

Views

Author

Paul Barry, Sep 23 2004

Keywords

Comments

Row sums give A002605. Diagonal sums give A052907.
The Riordan array (1,s+t*x) defines T(n,k) = binomial(k,n-k)*s^k*(t/s)^(n-k). The row sums satisfy a(n) = s*a(n-1) + t*a(n-2) and the diagonal sums satisfy a(n) = s*a(n-2) + t*a(n-3).
T(n,k) is the number of compositions of n into two types of parts of size 1 and 2 that have exactly k parts. - Geoffrey Critzer, Aug 18 2012.
Triangle T(n,k), 0<=k<=n, read by rows, given by [0, 1, -1, 0, 0, 0, 0, ...] DELTA [2, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Sep 22 2020

Examples

			Rows begin {1}, {0,2}, {0,2,4}, {0,0,8,8}, {0,0,4,24,16}, {0,0,0,24,64,32},...
T(3,2)=8 because we have: 1+2,1+2',1'+2,1'+2',2+1,2+1',2'+1,2'+1' where a part of the second type is designated by '. - _Geoffrey Critzer_, Aug 18 2012
		

Crossrefs

Programs

  • Mathematica
    nn = 8; CoefficientList[Series[1/(1 - 2 y x - 2 y x^2), {x, 0, nn}], {x, y}] // Grid  (* Geoffrey Critzer, Aug 18 2012 *)

Formula

Number triangle T(n, k) = 2^k*binomial(k, n-k).
Columns have g.f. (2x+2x^2)^k.
T(n,k) = A026729(n,k)*2^k. - Philippe Deléham, Jul 28 2006
O.g.f.: 1/(1-2*y*x-2*y*x^2). - Geoffrey Critzer, Aug 18 2012.

A099493 Expansion of (1+x^2)^2/(1+x^2-2x^3+x^4+x^6).

Original entry on oeis.org

1, 0, 1, 2, -1, 0, 3, -4, -3, 8, -7, -10, 23, -8, -33, 56, 1, -104, 121, 58, -297, 232, 291, -780, 349, 1072, -1903, 174, 3407, -4272, -1505, 9840, -8543, -8752, 26321, -13902, -33777, 65456, -11805, -110356, 150173, 35192, -325303, 310054, 257319, -885496, 537919, 1054888, -2240927
Offset: 0

Views

Author

Paul Barry, Oct 19 2004

Keywords

Comments

A Chebyshev transform of A052907, which has g.f. 1/(1-2x^2-2x^3). The image of G(x) under the Chebyshev transform is (1/(1+x^2))G(x/(1+x^2)).

Formula

a(n)=-a(n-2)+2a(n-3)-a(n-4)-a(n-6); a(n)=sum{k=0..floor(n/2), C(n-k, k)(-1)^k*sum{j=0.., floor(n-2k/2), C(j, n-2k-2j)2^j}}.

A191697 a(n) = r1^n + r2^n + r3^n where r1, r2, r3 are the three roots of x^3 - 2*x - 2 = 0.

Original entry on oeis.org

0, 4, 6, 8, 20, 28, 56, 96, 168, 304, 528, 944, 1664, 2944, 5216, 9216, 16320, 28864, 51072, 90368, 159872, 282880, 500480, 885504, 1566720, 2771968, 4904448, 8677376, 15352832, 27163648, 48060416, 85032960, 150448128, 266186752, 470962176, 833269760
Offset: 1

Views

Author

N. J. A. Sloane, Jun 19 2011

Keywords

Comments

Definition 1.1 defines F_3^n as a Boolean function and definition 1.3 defines the Fourier transform of a Boolean function. - Michael Somos, Aug 04 2012

Examples

			G.f. = 4*x^2 + 6*x^3 + 8*x^4 + 20*x^5 + 28*x^6 + 56*x^7 + 96*x^8 + 168*x^9 + ...
		

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(2*x^2*(2+3*x)/(1-2*x^2-2*x^3))); // G. C. Greubel, Aug 13 2018
    
  • Magma
    I:=[0,4,6]; [n le 3 select I[n] else 2*Self(n-2)+2*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Aug 14 2018
  • Mathematica
    Rest[CoefficientList[Series[2*x^2*(2+3*x)/(1-2*x^2-2*x^3), {x, 0, 50}], x]] (* G. C. Greubel, Aug 13 2018 *)
    LinearRecurrence[{0, 2, 2}, {0, 4, 6}, 40] (* Vincenzo Librandi, Aug 14 2018 *)
  • PARI
    {a(n) = if( n<1, 0, polsym( x^3 - 2*x - 2, n)[n + 1])}; /* Michael Somos, Aug 04 2012 */
    
  • PARI
    {a(n) = if( n<1, 0, sum( x=0, 2^n-1, (-1)^sum( i=0, n-1, bittest(x, i) * bittest(x, (i+1)%n) * bittest(x, (i+2)%n))))}; /* Michael Somos, Aug 04 2012 */
    

Formula

a(n) = hat{F_3^n}(0), the Fourier transform evaluated at 0 of the Boolean function F_3^n defined by F_3^n(x_0, ..., x_{n-1}) = Sum_{ 0Michael Somos, Aug 04 2012
From Michael Somos, Aug 04 2012: (Start)
G.f.: 2 * x^2 * (2 + 3*x) / (1 - 2*x^2 - 2*x^3).
a(n + 3) = 2*a(n + 1) + 2*a(n). (End)
a(n) = 4*A052907(n) +6*A052907(n-1). - R. J. Mathar, Aug 10 2012

A099092 Riordan array (1,2+4x).

Original entry on oeis.org

1, 0, 2, 0, 4, 4, 0, 0, 16, 8, 0, 0, 16, 48, 16, 0, 0, 0, 96, 128, 32, 0, 0, 0, 64, 384, 320, 64, 0, 0, 0, 0, 512, 1280, 768, 128, 0, 0, 0, 0, 256, 2560, 3840, 1792, 256, 0, 0, 0, 0, 0, 2560, 10240, 10752, 4096, 512, 0, 0, 0, 0, 0, 1024, 15360, 35840, 28672, 9216, 1024, 0, 0, 0
Offset: 0

Views

Author

Paul Barry, Sep 25 2004

Keywords

Comments

Row sums are A063727. Diagonal sums are A052907.
The Riordan array (1, s+tx) defines T(n,k) = binomial(k,n-k)*s^k*(t/s)^(n-k). The row sums satisfy a(n) = s*a(n-1) + t*a(n-2) and the diagonal sums satisfy a(n) = s*a(n-2) + t*a(n-3).

Examples

			Rows begin
  {1},
  {0,  2},
  {0,  4,  4},
  {0,  0, 16,  8},
  {0,  0, 16, 48, 16}, ...
		

Crossrefs

Formula

Number triangle T(n,k) = binomial(k, n-k)*2^n; columns have g.f. (2x+4x^2)^k.
T(n,k) = A113953(n,k)*2^k = A026729(n,k)*2^n. - Philippe Deléham, Dec 11 2008

A104579 A Padovan-Jacobsthal convolution triangle.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 1, 4, 3, 0, 1, 4, 3, 6, 4, 0, 1, 5, 12, 6, 8, 5, 0, 1, 6, 16, 24, 10, 10, 6, 0, 1, 13, 24, 34, 40, 15, 12, 7, 0, 1, 16, 53, 60, 60, 60, 21, 14, 8, 0, 1, 25, 72, 135, 120, 95, 84, 28, 16, 9, 0, 1, 42, 126, 200, 275, 210, 140, 112, 36, 18, 10, 0, 1, 57, 220, 381
Offset: 0

Views

Author

Paul Barry, Mar 16 2005

Keywords

Comments

First column is A052947. Row sums are A077947. Diagonal sums are A052907.

Examples

			Rows begin {1},{0,1},{1,0,1},{2,2,0,1},{1,4,3,0,1},{4,3,6,4,0,1},..
		

Formula

Riordan array (1/(1-x^2-2x^3), x/(1-x^2-2x^3))
T(n,k) = T(n-1,k-1)+T(n-2,k)+2*T(n-3,k), T(0,0)=1, T(n,k)=0 if k>n or if k<0. - Philippe Deléham, Jan 08 2014
Showing 1-6 of 6 results.