cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052909 Expansion of g.f. (1+x-x^2)/((1-x)*(1-3*x)).

Original entry on oeis.org

1, 5, 16, 49, 148, 445, 1336, 4009, 12028, 36085, 108256, 324769, 974308, 2922925, 8768776, 26306329, 78918988, 236756965, 710270896, 2130812689, 6392438068, 19177314205, 57531942616, 172595827849, 517787483548, 1553362450645
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Examples

			Ternary.......................Decimal
1...................................1
12..................................5
121................................16
1211...............................49
12111.............................148
121111............................445
1211111..........................1336
12111111.........................4009
121111111.......................12028
1211111111......................36085, etc. - _Philippe Deléham_, Feb 17 2014
		

Crossrefs

Programs

  • GAP
    Concatenation([1], List([1..30], n-> (11*3^n - 3)/6)); # G. C. Greubel, Oct 15 2019
  • Magma
    I:=[1, 5, 16]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 22 2012
    
  • Maple
    spec := [S,{S=Prod(Union(Sequence(Z),Z),Sequence(Union(Z,Z,Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[(1+x-x^2)/((1-x)*(1-3*x)),{x,0,30}],x] (* Vincenzo Librandi, Jun 22 2012 *)
    Join[{1}, (11*3^Range[30] -3)/6] (* G. C. Greubel, Oct 15 2019 *)
  • PARI
    vector(30, n, if(n==1, 1, (11*3^(n-1) - 3)/6)) \\ G. C. Greubel, Oct 15 2019
    
  • Sage
    [1]+[(11*3^n -3)/6 for n in (1..30)] # G. C. Greubel, Oct 15 2019
    

Formula

a(n) = 3*a(n-1) + 1, with a(0)=1, a(1)=5, a(2)=16.
a(n) = (11*3^n - 3)/6.
a(n) = 4*a(n-1) - 3*a(n-2). - Vincenzo Librandi, Jun 22 2012
a(n+1) = A237930(n) + 2*A000244(n). - Philippe Deléham, Feb 17 2014
a(n) = Sum_{k=1..3} floor((3^n)/k). - Lechoslaw Ratajczak, Jul 31 2016
E.g.f.: (11*exp(3*x) - 3*exp(x) - 2)/6. - Stefano Spezia, Aug 28 2023

Extensions

More terms from James Sellers, Jun 08 2000