cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052912 Expansion of 1/(1-2*x-2*x^3).

Original entry on oeis.org

1, 2, 4, 10, 24, 56, 132, 312, 736, 1736, 4096, 9664, 22800, 53792, 126912, 299424, 706432, 1666688, 3932224, 9277312, 21888000, 51640448, 121835520, 287447040, 678174976, 1600020992, 3774936064, 8906222080, 21012486144, 49574844416
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Cf. A000930.

Programs

  • GAP
    a:=[1,2,4];; for n in [4..30] do a[n]:=2*a[n-1]+2*a[n-3]; od; a; # G. C. Greubel, Oct 15 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-2*x-2*x^3) )); // G. C. Greubel, Oct 15 2019
    
  • Maple
    spec := [S,{S=Sequence(Union(Prod(Union(Z,Z),Z,Z),Z,Z))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
    seq(coeff(series(1/(1-2*x-2*x^3), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 15 2019
  • Mathematica
    LinearRecurrence[{2,0,2}, {1,2,4}, 30] (* G. C. Greubel, Oct 15 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec(1/(1-2*x-2*x^3)) \\ G. C. Greubel, Oct 15 2019
    
  • Sage
    def A052912_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(1/(1-2*x-2*x^3)).list()
    A052912_list(30) # G. C. Greubel, Oct 15 2019
    

Formula

G.f.: 1/(1 - 2*x - 2*x^3)
a(n) = 2*a(n-1) +2*a(n-3).
a(n) = Sum_{alpha = RootOf(-1 + 2*z + 2*z^3)} (1/43)*(8 + 9*alpha + 12*alpha^2)*alpha^(-1-n).
a(n) = Sum_{k=0..n} binomial(k, floor((n-k)/2)) * 2^k * (1+(-1)^(n-k))/2. - Paul Barry, Jan 12 2006
G.f.: Q(0)/2, where Q(k) = 1 + 1/(1 - x*(4*k+2 + 2*x^2)/( x*(4*k+4 + 2*x^2) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 30 2013
a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k, k)*2^(n-2*k). - Greg Dresden, Aug 03 2024

Extensions

More terms from James Sellers, Jun 05 2000