cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A239819 T(n,k)=Number of nXk 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it, modulo 4.

Original entry on oeis.org

2, 4, 5, 10, 23, 11, 24, 132, 113, 25, 56, 729, 1480, 582, 57, 132, 3951, 18728, 17552, 2981, 129, 312, 21602, 232272, 510748, 204779, 15266, 293, 736, 118253, 2912793, 14544801, 13597573, 2405330, 78188, 665, 1736, 646306, 36627126, 418324402
Offset: 1

Views

Author

R. H. Hardin, Mar 27 2014

Keywords

Comments

Table starts
....2.......4.........10............24................56..................132
....5......23........132...........729..............3951................21602
...11.....113.......1480.........18728............232272..............2912793
...25.....582......17552........510748..........14544801............418324402
...57....2981.....204779......13597573.........884977259..........58232200212
..129...15266....2405330.....366379173.......54668820459........8243207656791
..293...78188...28156167....9807771898.....3347474694032.....1154988223050638
..665..400542..330152684..263419973152...205970817822022...162794110794893005
.1509.2051667.3868656623.7064275271994.12641836066488239.22871029907841066549

Examples

			Some solutions for n=3 k=4
..2..0..0..3....3..0..0..0....3..0..2..2....2..3..0..0....3..0..2..2
..1..0..2..2....1..2..0..0....2..0..1..1....1..3..2..0....1..0..2..0
..1..2..0..0....2..1..2..3....3..2..3..3....1..0..0..2....3..0..2..0
		

Crossrefs

Row 1 is A052912

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +2*a(n-2) +2*a(n-3)
k=2: [order 10]
k=3: [order 35]
Empirical for row n:
n=1: a(n) = 2*a(n-1) +2*a(n-3)
n=2: [order 16]
n=3: [order 64]

A241283 T(n,k)=Number of nXk 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

2, 3, 4, 4, 3, 10, 7, 5, 9, 24, 10, 13, 41, 36, 56, 15, 17, 126, 236, 139, 132, 24, 35, 224, 773, 1615, 532, 312, 35, 90, 934, 1800, 6783, 12356, 2111, 736, 54, 141, 2741, 16843, 20717, 77955, 96171, 8473, 1736, 83, 288, 5225, 54167, 451318, 309657, 1009773
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2014

Keywords

Comments

Table starts
....2......3........4..........7..........10............15...........24
....4......3........5.........13..........17............35...........90
...10......9.......41........126.........224...........934.........2741
...24.....36......236........773........1800.........16843........54167
...56....139.....1615.......6783.......20717........451318......1543713
..132....532....12356......77955......309657......15616828.....60486552
..312...2111....96171....1009773.....5423164.....730435588...2949336562
..736...8473...761754...14440961...113305157...40083129145.193899487190
.1736..34053..6079503..217830879..2759021846.2390612565177
.4096.136880.48655224.3381893022.75062814060

Examples

			Some solutions for n=4 k=4
..3..3..2..3....3..2..3..2....3..2..3..2....3..3..2..3....3..3..2..3
..2..1..1..0....0..3..2..3....2..1..2..3....2..1..3..2....2..1..1..0
..2..2..0..0....2..0..2..0....0..0..2..0....3..1..2..2....2..2..2..2
..2..0..0..2....0..0..0..3....2..0..2..0....3..2..1..2....2..0..0..2
		

Crossrefs

Column 1 is A052912
Row 1 is A159288(n+1)

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) +2*a(n-3)
k=2: [order 31]
Empirical for row n:
n=1: a(n)=a(n-2)+2*a(n-3)
n=2: [order 17] for n>18

A239599 T(n,k)=Number of nXk 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

2, 4, 3, 10, 3, 4, 24, 15, 4, 7, 56, 64, 31, 4, 10, 132, 244, 187, 82, 5, 15, 312, 1030, 1310, 643, 177, 7, 24, 736, 4303, 9806, 8773, 1737, 458, 8, 35, 1736, 17923, 76769, 128347, 38824, 7461, 1071, 11, 54, 4096, 75264, 611126, 1991329, 1031560, 282333, 24946
Offset: 1

Views

Author

R. H. Hardin, Mar 22 2014

Keywords

Comments

Table starts
..2..4....10.....24.......56........132.........312.........736........1736
..3..3....15.....64......244.......1030........4303.......17923.......75264
..4..4....31....187.....1310.......9806.......76769......611126.....4929897
..7..4....82....643.....8773.....128347.....1991329....31686730...510551001
.10..5...177...1737....38824....1031560....30460289...944810972.30050150163
.15..7...458...7461...282333...12509870...681399736.40483561185
.24..8..1071..24946..1583770..120511910.11135057785
.35.11..2150..78667..8002162.1104844380
.54.12..5209.313003.56967196
.83.16.11204.946740

Examples

			Some solutions for n=4 k=4
..3..0..0..2....3..0..2..0....3..0..0..0....3..0..0..2....3..0..0..2
..2..3..0..0....3..2..2..2....2..3..0..2....2..3..2..2....2..3..2..0
..3..2..2..0....2..1..0..0....3..2..2..2....3..2..0..2....3..2..0..0
..2..1..2..0....2..1..2..0....2..3..2..0....2..1..2..0....2..3..2..2
		

Crossrefs

Column 1 is A159288(n+1)
Row 1 is A052912

Formula

Empirical for column k:
k=1: a(n) = a(n-2) +2*a(n-3)
k=2: a(n) = a(n-2) +a(n-5) for n>6
Empirical for row n:
n=1: a(n) = 2*a(n-1) +2*a(n-3)
n=2: [order 44] for n>47

A240271 T(n,k)=Number of nXk 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

2, 4, 3, 10, 7, 4, 24, 35, 14, 7, 56, 157, 118, 36, 10, 132, 713, 919, 582, 72, 15, 312, 3263, 7562, 8265, 2000, 170, 24, 736, 14895, 64721, 126286, 49921, 8353, 411, 35, 1736, 68101, 563496, 2059061, 1363144, 382690, 37422, 879, 54, 4096, 311509, 4956889
Offset: 1

Views

Author

R. H. Hardin, Apr 03 2014

Keywords

Comments

Table starts
..2....4......10.........24..........56..........132...........312
..3....7......35........157.........713.........3263.........14895
..4...14.....118........919........7562........64721........563496
..7...36.....582.......8265......126286......2059061......34514871
.10...72....2000......49921.....1363144.....40760821....1277623744
.15..170....8353.....382690....19210586...1063706501...63085436203
.24..411...37422....3076452...278945445..27923918285.3004792552569
.35..879..135463...19781372..3200032085.576407548906
.54.2106..580528..154994425.46095401280
.83.4874.2403439.1144262410

Examples

			Some solutions for n=4 k=4
..2..3..0..3....3..2..2..2....3..0..0..2....3..0..2..0....3..2..2..2
..2..1..2..3....3..1..2..1....2..3..2..0....2..3..0..2....2..1..2..0
..2..0..1..0....2..1..2..2....3..1..2..0....3..1..1..0....3..2..0..2
..2..0..1..0....2..0..0..1....3..2..2..0....3..2..2..1....2..3..2..2
		

Crossrefs

Column 1 is A159288(n+1)
Row 1 is A052912

Formula

Empirical for column k:
k=1: a(n) = a(n-2) +2*a(n-3)
k=2: [order 13]
Empirical for row n:
n=1: a(n) = 2*a(n-1) +2*a(n-3)
n=2: [order 26] for n>28

A255115 Number of n-length words on {0,1,2} in which 0 appears only in runs of length 2.

Original entry on oeis.org

1, 2, 5, 12, 28, 66, 156, 368, 868, 2048, 4832, 11400, 26896, 63456, 149712, 353216, 833344, 1966112, 4638656, 10944000, 25820224, 60917760, 143723520, 339087488, 800010496, 1887468032, 4453111040, 10506243072, 24787422208, 58481066496, 137974619136
Offset: 0

Views

Author

Milan Janjic, Feb 14 2015

Keywords

Comments

Apparently a(n) = A239333(n).

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 1, a[1] == 2,  a[2]== 5, a[n] == 2 a[n - 1] + 2 a[n - 3]}, a[n], {n, 0, 29}]
  • PARI
    Vec(-(x^2+1)/(2*x^3+2*x-1) + O(x^100)) \\ Colin Barker, Feb 15 2015

Formula

a(n+3) = 2*a(n+2) + 2*a(n) with n>1, a(0) = 1, a(1) = 2, a(2)=5.
G.f.: -(x^2+1) / (2*x^3+2*x-1). - Colin Barker, Feb 15 2015
a(n) = A052912(n)+A052912(n-2). - R. J. Mathar, Jun 18 2015

A089978 Expansion of 1/(1-3x-3x^3).

Original entry on oeis.org

1, 3, 9, 30, 99, 324, 1062, 3483, 11421, 37449, 122796, 402651, 1320300, 4329288, 14195817, 46548351, 152632917, 500486202, 1641103659, 5381209728, 17645087790, 57858574347, 189719352225, 622093320045, 2039855683176
Offset: 0

Views

Author

Paul Barry, Nov 18 2003

Keywords

Examples

			G.f. = 1 + 3*x + 9*x^2 + 30*x^3 + 99*x^4 + 324*x^5 + 1062*x^6 + 3483*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-3x-3x^3),{x,0,30}],x] (* or *) LinearRecurrence[ {3,0,3},{1,3,9},30] (* Harvey P. Dale, Jul 22 2015 *)
  • PARI
    {a(n) = sum(k=0, n\3, binomial(n - 2*k, k) * 3^(n - 2*k))}; /* Michael Somos, Jan 30 2015 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / (1 - 3*x - 3*x^3) + x * O(x^n), n))}; /* Michael Somos, Jan 30 2015 */

Formula

a(n) = Sum_{k=0..floor(n/2)} C(n-2*k, k)3^(n-2*k).
a(0)=1, a(1)=3, a(2)=9, a(n)=3*a(n-1)+3*a(n-3). - Harvey P. Dale, Jul 22 2015

A089979 Expansion of 1/(1-4x-4x^3).

Original entry on oeis.org

1, 4, 16, 68, 288, 1216, 5136, 21696, 91648, 387136, 1635328, 6907904, 29180160, 123261952, 520679424, 2199438336, 9290801152, 39245922304, 165781442560, 700288974848, 2958139588608, 12495684124672, 52783892398080
Offset: 0

Views

Author

Paul Barry, Nov 18 2003

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1 - 4*x - 4*x^3), {x, 0, 50}], x] (* or *) LinearRecurrence[{4,0,4}, {1,4,16}, 50] (* G. C. Greubel, Apr 29 2017 *)
  • PARI
    x='x+O('x^50); Vec(1/(1 - 4*x - 4*x^3)) \\ G. C. Greubel, Apr 29 2017

Formula

a(n) = Sum_{k=0..floor(n/2)} C(n-2*k, k)*4^(n-2*k).
a(n) = 4*a(n-1) + 4*a(n-3). - G. C. Greubel, Apr 29 2017

A077999 Expansion of (1-x)/(1-2*x-2*x^3).

Original entry on oeis.org

1, 1, 2, 6, 14, 32, 76, 180, 424, 1000, 2360, 5568, 13136, 30992, 73120, 172512, 407008, 960256, 2265536, 5345088, 12610688, 29752448, 70195072, 165611520, 390727936, 921846016, 2174915072, 5131286016, 12106264064, 28562358272, 67387288576, 158987105280
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

a(n) = number of permutations on [n] that avoid nonconsecutive instances of the patterns 321 and 312. For example, a(4) does not count pi=4231 because 431 forms a 321 pattern in pi but 431 is not a consecutive (that is, contiguous) string in pi; also, the first 3 letters form a 312 pattern but that's not disqualifying because they do occur consecutively. Counting these permutations by various statistics yields the listed formulas/recurrences. - David Callan, Oct 26 2006
a(n) = term (1,1) of M^n, M = the 4 X 4 matrix [1,0,1,1; 1,1,0,0; 0,1,0,1; 1,0,0,1]. a(n)/a(n-1) tends to 2.3593040859..., an eigenvalue of the matrix and a root to the characteristic polynomial x^4 - 3x^3 + 2x^2 - 2x + 2. - Gary W. Adamson, Oct 01 2008

Crossrefs

Programs

  • GAP
    a:=[1,1,2];; for n in [4..40] do a[n]:=2*(a[n-1]+a[n-3]); od; a; # G. C. Greubel, Jun 27 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x)/( 1-2*x-2*x^3) )); // G. C. Greubel, Jun 27 2019
    
  • Mathematica
    CoefficientList[Series[(1-x)/(1-2x-2x^3),{x,0,40}],x] (* or *) LinearRecurrence[{2,0,2},{1,1,2},40] (* Harvey P. Dale, Sep 10 2016 *)
  • PARI
    my(x='x+O('x^40)); Vec((1-x)/(1-2*x-2*x^3)) \\ G. C. Greubel, Jun 27 2019
    
  • Sage
    ((1-x)/(1-2*x-2*x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 27 2019
    

Formula

a(n) = 2*(a(n-1) + a(n-3)) counts the above permutations by first entry. a(n) = a(n-1) + a(n-2) + 3*Sum_{k=0..n-3} a(k) counts by last entry. a(n) = 2^(n-1) + Sum_{k=0..n-3} 2^(n-2-k)*a(k) counts by location of first 3xx pattern. a(n) = Sum_{k=0..floor(n/3)} ((n-k)/(n-2k))* binomial(n-2*k,k) * 2^(n-2*k-1) counts by number of 3xx patterns. - David Callan, Oct 26 2006
a(n) = A052912(n) - A052912(n-1). - R. J. Mathar, May 30 2014
a(n) = (-1)^n * A110524(n). - G. C. Greubel, Jun 27 2019

A077851 Expansion of (1-x)^(-1)/(1 - 2*x - 2*x^3).

Original entry on oeis.org

1, 3, 7, 17, 41, 97, 229, 541, 1277, 3013, 7109, 16773, 39573, 93365, 220277, 519701, 1226133, 2892821, 6825045, 16102357, 37990357, 89630805, 211466325, 498913365, 1177088341, 2777109333, 6552045397, 15458267477, 36470753621, 86045598037, 203007731029
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Programs

A077927 Expansion of (1-x)^(-1)/(1+2*x+2*x^3).

Original entry on oeis.org

1, -1, 3, -7, 17, -39, 93, -219, 517, -1219, 2877, -6787, 16013, -37779, 89133, -210291, 496141, -1170547, 2761677, -6515635, 15372365, -36268083, 85567437, -201879603, 476295373, -1123725619, 2651210445, -6255011635, 14757474509, -34817369907, 82144763085, -193804475187
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Formula

a(n) = -a(n-1) + 2 a(n-2) - 2 a(n-3) + 2 a(n-4) - N-E. Fahssi, Mar 29 2008
a(n) -a(n-1) = (-1)^(n+1)*A052912(n). - R. J. Mathar, Jul 08 2022
Showing 1-10 of 10 results.