cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052919 a(n) = 1 + 2*3^(n-1) with a(0)=2.

Original entry on oeis.org

2, 3, 7, 19, 55, 163, 487, 1459, 4375, 13123, 39367, 118099, 354295, 1062883, 3188647, 9565939, 28697815, 86093443, 258280327, 774840979, 2324522935, 6973568803, 20920706407, 62762119219, 188286357655, 564859072963
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

It appears that if s(n) is a first order rational sequence of the form s(1)=3, s(n) = (2*s(n-1)+1)/(s(n-1)+2), n > 1, then s(n) = a(n)/(a(n)-2).
The binomial transform is 2, 5, 15, 51, 187, ...A007581 without the leading term. - R. J. Mathar, Apr 07 2022

Programs

  • GAP
    Concatenation([2], List([1..30], n-> 1 + 2*3^(n-1) )); # G. C. Greubel, Oct 16 2019
  • Magma
    I:=[2, 3, 7]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 22 2012
    
  • Maple
    spec := [S,{S=Union(Sequence(Prod(Sequence(Z),Union(Z,Z))),Sequence(Z))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
    seq(`if`(n=0, 2, 1 + 2*3^(n-1)), n=0..30); # G. C. Greubel, Oct 16 2019
  • Mathematica
    Join[{2},Table[2*(3^n+1)-1,{n,0,30}]] (* Vladimir Joseph Stephan Orlovsky, Feb 14 2011*)
    CoefficientList[Series[(2-5*x+x^2)/((1-x)*(1-3*x)),{x,0,40}],x] (* Vincenzo Librandi, Jun 22 2012 *)
    LinearRecurrence[{4,-3},{2,3,7},30] (* Harvey P. Dale, Dec 12 2017 *)
  • PARI
    vector(31, n, if(n==1, 2, 1+ 2*3^(n-2))) \\ G. C. Greubel, Oct 16 2019
    
  • Sage
    [2]+[1+2*3^(n-1) for n in (1..30)] # G. C. Greubel, Oct 16 2019
    

Formula

a(n) = 1 + 2*3^(n-1) for n > 0 with a(0) = 2.
G.f.: (2 - 5*x + x^2)/((1-x)*(1-3*x)).
a(n) = 4*a(n-1) - 3*a(n-2), with a(0)=2, a(1)=3, a(2)=7.
a(0) = 2 and a(n) = A100702(n) for n >= 1. - Omar E. Pol, Mar 02 2012
a(n) = A104743(n) - A104743(n-1). - J. M. Bergot, Jun 07 2013

Extensions

More terms from James Sellers, Jun 05 2000