A052934 Expansion of (1-x)/(1-6*x).
1, 5, 30, 180, 1080, 6480, 38880, 233280, 1399680, 8398080, 50388480, 302330880, 1813985280, 10883911680, 65303470080, 391820820480, 2350924922880, 14105549537280, 84633297223680, 507799783342080
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 922
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Index entries for linear recurrences with constant coefficients, signature (6).
Crossrefs
Cf. A083425.
Programs
-
GAP
Concatenation([1], List([1..30], n-> 5*6^(n-1) )); # G. C. Greubel, Oct 18 2019
-
Magma
[1] cat [5*6^(n-1): n in [1..30]]; // G. C. Greubel, Oct 18 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 22); Coefficients(R!( (1-x)/(1-6*x))); // Marius A. Burtea, Oct 18 2019 -
Maple
spec := [S,{S=Sequence(Prod(Sequence(Z),Union(Z,Z,Z,Z,Z)))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20); seq(`if`(n=0,1,5*6^(n-1)), n=0..30); # G. C. Greubel, Oct 18 2019
-
Mathematica
Join[{1},NestList[6#&,5,20]] (* Harvey P. Dale, Nov 30 2015 *)
-
PARI
vector(31, n, if(n==1,1, 5*6^(n-2))) \\ G. C. Greubel, Oct 18 2019
-
Sage
[1]+[5*6^(n-1) for n in (1..30)] # G. C. Greubel, Oct 18 2019
Formula
a(n) = 6*a(n-1), n>=2.
a(n) = 5*6^(n-1), n>=1. - Vincenzo Librandi, Sep 15 2011
G.f.: (1-x)/(1-6*x).
G.f.: 1/(1 - 5*Sum_{k>=1} x^k).
E.g.f.: (1/6)*(1 + 5*exp(6*x)). - Stefano Spezia, Oct 18 2019
Comments