cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052940 a(0) = 1; a(n) = 3*2^n - 1, for n > 0.

Original entry on oeis.org

1, 5, 11, 23, 47, 95, 191, 383, 767, 1535, 3071, 6143, 12287, 24575, 49151, 98303, 196607, 393215, 786431, 1572863, 3145727, 6291455, 12582911, 25165823, 50331647, 100663295, 201326591, 402653183, 805306367, 1610612735, 3221225471, 6442450943, 12884901887
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

A simple regular expression.
Numbers k > 1 such that a(k-1)^2 + a(k) is square, e.g., 5^2 + 11 = 6^2; 11^2 + 23 = 12^2. - Vincenzo Librandi, Aug 06 2010
Numerator of the sum of terms at the n-th level of the Calkin-Wilf tree. - Carl Najafi, Jul 10 2011

Crossrefs

Apart from initial terms, same as A055010 and A083329.
Subsequence of A036991.

Programs

  • GAP
    Concatenation([1], List([1..30], n-> 3*2^n -1)); # G. C. Greubel, Oct 18 2019
    
  • Magma
    [1] cat [3*2^n - 1: n in [1..30]]; // Vincenzo Librandi, Dec 01 2015
    
  • Maple
    spec:= [S,{S=Prod(Sequence(Union(Z,Z)),Union(Sequence(Z),Z,Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
    seq(`if`(n=0,1,3*2^n -1), n=0..30); # G. C. Greubel, Oct 18 2019
  • Mathematica
    Join[{1},Table[3*2^n-1,{n,30}]] (* or *) Join[{1},LinearRecurrence[{3,-2},{5,11},30]] (* Harvey P. Dale, Mar 07 2015 *)
  • PARI
    a(n)=if(n,3*2^n-1,1) \\ Charles R Greathouse IV, Oct 07 2015
    
  • PARI
    Vec((1+2*x-2*x^2)/(-1+2*x)/(-1+x) + O(x^30)) \\ Altug Alkan, Dec 01 2015
    
  • Python
    print([1] + [(3<Gennady Eremin, Aug 29 2023
  • Sage
    [1]+[3*2^n -1 for n in (1..30)] # G. C. Greubel, Oct 18 2019
    

Formula

G.f.: (1+2*x-2*x^2)/((1-x)*(1-2*x)).
a(n) = 3*a(n-1) - 2*a(n-2) for n > 2.
Binomial transform of 3 - 0^n - (-1)^n = (1, 4, 2, 4, 2, 4, 2, ...). - Paul Barry, Jun 30 2003
a(n) = A107909(A023548(n+1)) for n > 1. - Reinhard Zumkeller, May 28 2005
Row sums of triangle A134060. - Gary W. Adamson, Oct 05 2007
Equals row sums of triangle A140182. - Gary W. Adamson, May 11 2008
Equals M*Q, where M is a modified Pascal triangle (1,2) with first term "1" instead of 2; as an infinite lower triangular matrix. Q is the vector (1, 2, 2, 2, ...). - Gary W. Adamson, Nov 30 2015
From Gennady Eremin, Aug 29 2023: (Start)
a(n+1) = 2*a(n) + 1 for n > 0.
a(n) = (A000225(n+1) + A000225(n+2))/2 for n > 0. (End)

Extensions

More terms from James Sellers, Jun 08 2000
a(30)-a(32) from Vincenzo Librandi, Dec 01 2015