A052948 Expansion of g.f.: (1-2*x)/(1-3*x+2*x^3).
1, 1, 3, 7, 19, 51, 139, 379, 1035, 2827, 7723, 21099, 57643, 157483, 430251, 1175467, 3211435, 8773803, 23970475, 65488555, 178918059, 488813227, 1335462571, 3648551595, 9968028331, 27233159851, 74402376363, 203271072427, 555346897579, 1517235940011, 4145165675179
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
- Denis Chebikin and Richard Ehrenborg, The f-vector of the descent polytope, arXiv:0812.1249 [math.CO], 2008-2010; Disc. Comput. Geom., 45 (2011), 410-424.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1007
- Yassine Otmani, The 2-Pascal Triangle and a Related Riordan Array, J. Int. Seq. (2025) Vol. 28, Issue 3, Art. No. 25.3.5. See p. 12.
- Alina F. Y. Zhao, Bijective proofs for some results on the descent polytope, Australasian Journal of Combinatorics, Volume 65(1) (2016), Pages 45-52.
- Index entries for linear recurrences with constant coefficients, signature (3,0,-2).
Programs
-
GAP
a:=[1,1,3];; for n in [4..30] do a[n]:=3*a[n-1]-2*a[n-3]; od; a; # G. C. Greubel, Oct 21 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-2*x)/(1-3*x+2*x^3) )); // G. C. Greubel, Oct 21 2019 -
Maple
spec := [S,{S=Sequence(Prod(Union(Sequence(Prod(Sequence(Z),Z)),Z),Z))}, unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20); seq(coeff(series((1-2*x)/(1-3*x+2*x^3), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Oct 21 2019
-
Mathematica
CoefficientList[Series[(1-2x)/(1-3x+2x^3),{x,0,30}],x] (* or *) LinearRecurrence[{3,0,-2},{1,1,3},30] (* Harvey P. Dale, Aug 22 2012 *)
-
PARI
Vec((1-2*x)/(1-3*x+2*x^3)+O(x^30))
-
Sage
from sage.combinat.sloane_functions import recur_gen2b; it = recur_gen2b(1,1,2,2, lambda n: -1); [next(it) for i in range(0,29)] # Zerinvary Lajos, Jul 09 2008
Formula
a(n) = 2*a(n-1) + 2*a(n-2) - 1.
a(n) = Sum_{alpha=RootOf(1-3*z+2*z^3)} alpha^(-n)/3.
a(n) = (1 + (1+sqrt(3))^n + (1-sqrt(3))^n)/3. Binomial transform of A025192 (with interpolated zeros). - Paul Barry, Sep 16 2003
a(n) = (1/3)*Sum_{k=1..5} sin(Pi*k/2)^2 * (1 + 2*cos(Pi*k/6))^n. - Herbert Kociemba, Jun 02 2004
a(0)=1, a(1)=1, a(2)=3, a(n) = 3*a(n-1) - 2*a(n-3). - Harvey P. Dale, Aug 22 2012
E.g.f.: exp(x)*(1 + 2*cosh(sqrt(3)*x))/3. - Stefano Spezia, Mar 02 2024
Extensions
More terms from James Sellers, Jun 06 2000
Definition revised by N. J. A. Sloane, Feb 24 2011
Comments