cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052948 Expansion of g.f.: (1-2*x)/(1-3*x+2*x^3).

Original entry on oeis.org

1, 1, 3, 7, 19, 51, 139, 379, 1035, 2827, 7723, 21099, 57643, 157483, 430251, 1175467, 3211435, 8773803, 23970475, 65488555, 178918059, 488813227, 1335462571, 3648551595, 9968028331, 27233159851, 74402376363, 203271072427, 555346897579, 1517235940011, 4145165675179
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < 6 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 3, s(n) = 3.
In general, a(n,m,j,k) = (2/m)*Sum_{r=1..m-1} sin(j*r*Pi/m)*sin(k*r*Pi/m)*(1+2*cos(Pi*r/m))^n is the number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < m and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = j, s(n) = k. - Herbert Kociemba, Jun 02 2004

Crossrefs

Programs

  • GAP
    a:=[1,1,3];; for n in [4..30] do a[n]:=3*a[n-1]-2*a[n-3]; od; a; # G. C. Greubel, Oct 21 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-2*x)/(1-3*x+2*x^3) )); // G. C. Greubel, Oct 21 2019
    
  • Maple
    spec := [S,{S=Sequence(Prod(Union(Sequence(Prod(Sequence(Z),Z)),Z),Z))}, unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
    seq(coeff(series((1-2*x)/(1-3*x+2*x^3), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Oct 21 2019
  • Mathematica
    CoefficientList[Series[(1-2x)/(1-3x+2x^3),{x,0,30}],x] (* or *) LinearRecurrence[{3,0,-2},{1,1,3},30] (* Harvey P. Dale, Aug 22 2012 *)
  • PARI
    Vec((1-2*x)/(1-3*x+2*x^3)+O(x^30))
    
  • Sage
    from sage.combinat.sloane_functions import recur_gen2b; it = recur_gen2b(1,1,2,2, lambda n: -1); [next(it) for i in range(0,29)] # Zerinvary Lajos, Jul 09 2008
    

Formula

a(n) = 2*a(n-1) + 2*a(n-2) - 1.
a(n) = Sum_{alpha=RootOf(1-3*z+2*z^3)} alpha^(-n)/3.
a(n) = (1 + (1+sqrt(3))^n + (1-sqrt(3))^n)/3. Binomial transform of A025192 (with interpolated zeros). - Paul Barry, Sep 16 2003
a(n) = (1/3)*Sum_{k=1..5} sin(Pi*k/2)^2 * (1 + 2*cos(Pi*k/6))^n. - Herbert Kociemba, Jun 02 2004
a(0)=1, a(1)=1, a(2)=3, a(n) = 3*a(n-1) - 2*a(n-3). - Harvey P. Dale, Aug 22 2012
a(n) = A077846(n) - 2*A077846(n-1). - R. J. Mathar, Feb 27 2019
E.g.f.: exp(x)*(1 + 2*cosh(sqrt(3)*x))/3. - Stefano Spezia, Mar 02 2024

Extensions

More terms from James Sellers, Jun 06 2000
Definition revised by N. J. A. Sloane, Feb 24 2011