cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052953 Expansion of 2*(1-x-x^2)/((1-x)*(1+x)*(1-2*x)).

Original entry on oeis.org

2, 2, 4, 6, 12, 22, 44, 86, 172, 342, 684, 1366, 2732, 5462, 10924, 21846, 43692, 87382, 174764, 349526, 699052, 1398102, 2796204, 5592406, 11184812, 22369622, 44739244, 89478486, 178956972, 357913942, 715827884, 1431655766, 2863311532
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n) = sum of absolute values of terms in the (n+1)-th row of the triangle in A108561; - Reinhard Zumkeller, Jun 10 2005
a(n) = A078008(n+1) + 2*(1 + n mod 2). - Reinhard Zumkeller, Jun 10 2005
Essentially the same as A128209. - R. J. Mathar, Jun 14 2008

Crossrefs

Apart from initial term, equals A026644(n+1) + 2.
Cf. A001045.

Programs

  • GAP
    List([0..40], n-> (2^(n+1) +3 +(-1)^n)/3); # G. C. Greubel, Oct 21 2019
  • Magma
    [(2^(n+1) +3 +(-1)^n)/3: n in [0..40]]; // G. C. Greubel, Oct 21 2019
    
  • Maple
    spec:= [S,{S=Union(Sequence(Union(Prod(Union(Z,Z),Z),Z)),Sequence(Z))}, unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
    seq((2^(n+1) +3 +(-1)^n)/3, n=0..40); # G. C. Greubel, Oct 21 2019
  • Mathematica
    LinearRecurrence[{2,1,-2}, {2,2,4}, 40] (* G. C. Greubel, Oct 22 2019 *)
    CoefficientList[Series[2(1-x-x^2)/((1-x)(1+x)(1-2x)),{x,0,40}],x] (* Harvey P. Dale, Aug 03 2025 *)
  • PARI
    vector(41, n, (2^n +3 -(-1)^n)/3 ) \\ G. C. Greubel, Oct 21 2019
    
  • Sage
    [(2^(n+1) +3 +(-1)^n)/3 for n in (0..40)] # G. C. Greubel, Oct 21 2019
    

Formula

G.f.: 2*(1-x-x^2)/((1-x^2)*(1-2*x)).
a(n) = a(n-1) + 2*a(n-2) - 2.
a(n) = 1 + Sum_{alpha=RootOf(-1+z+2*z^2)} (1 + 4*alpha)*alpha^(-1-n)/9.
a(2n) = 2*a(n-1)-2, a(2n+1) = 2*a(2n). - Lee Hae-hwang, Oct 11 2002
From Paul Barry, May 24 2004: (Start)
a(n) = A001045(n+1) + 1.
a(n) = (2^(n+1) - (-1)^(n+1))/3 + 1. (End)
E.g.f.: (2*exp(2*x) + 3*exp(x) + exp(-x))/3. - G. C. Greubel, Oct 21 2019

Extensions

More terms from James Sellers, Jun 05 2000