A052960 Expansion of ( 1-x-x^2 ) / ( 1-2*x-2*x^2+x^3+x^4 ).
1, 1, 3, 7, 18, 46, 118, 303, 778, 1998, 5131, 13177, 33840, 86905, 223182, 573157, 1471933, 3780093, 9707713, 24930522, 64024444, 164422126, 422254905, 1084399096, 2784861432, 7151844025, 18366756913, 47167941348, 121132691065
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1031
- Index entries for linear recurrences with constant coefficients, signature (2,2,-1,-1).
Programs
-
GAP
a:=[1,1,3,7];; for n in [5..30] do a[n]:=2*a[n-1]+2*a[n-2]-a[n-3] -a[n-4]; od; a; # G. C. Greubel, Oct 23 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x-x^2)/(1-2*x-2*x^2+x^3+x^4) )); // G. C. Greubel, Oct 23 2019 -
Maple
spec:= [S,{S=Sequence(Prod(Union(Sequence(Union(Prod(Z,Z),Z)),Z),Z))}, unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20); seq(coeff(series((1-x-x^2)/(1-2*x-2*x^2+x^3+x^4), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 23 2019
-
Mathematica
Table[Sum[Sum[Binomial[i+2k,2k]Binomial[i+k,n-i-2k],{k,0,n/2}],{i,0,n}],{n,0,12}] (* Emanuele Munarini, May 10 2011 *) LinearRecurrence[{2,2,-1,-1}, {1,1,3,7}, 30] (* G. C. Greubel, Oct 23 2019 *) CoefficientList[Series[(1-x-x^2)/(1-2x-2x^2+x^3+x^4),{x,0,50}],x] (* Harvey P. Dale, Jan 21 2021 *)
-
Maxima
makelist(sum(sum(binomial(i+2*k, 2*k)*binomial(i+k, n-i-2*k), k,0,n/2),i,0,n),n,0,24); /* Emanuele Munarini, May 10 2011 */
-
PARI
my(x='x+O('x^30)); Vec((1-x-x^2)/(1-2*x-2*x^2+x^3+x^4)) \\ G. C. Greubel, Oct 23 2019
-
Sage
def A052960_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1-x-x^2)/(1-2*x-2*x^2+x^3+x^4)).list() A052960_list(30) # G. C. Greubel, Oct 23 2019
Formula
G.f.: (1-x-x^2)/(1-2*x-2*x^2+x^3+x^4).
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3) - a(n-4).
a(n) = Sum_{alpha=RootOf(1-2*z-2*z^2+z^3+z^4)} (1/331)*(25 + 75*alpha - 6*alpha^2 - 5*alpha^3)*alpha^(-1-n).
a(n) = Sum_{i=0..n} Sum_{k=0..n/2} binomial(i+2*k, 2*k)*binomial(i+k, n-i-2*k). - Emanuele Munarini, May 10 2011
Extensions
More terms from James Sellers, Feb 06 2000
Comments