A052984 a(n) = 5*a(n-1) - 2*a(n-2) for n>1, with a(0) = 1, a(1) = 3.
1, 3, 13, 59, 269, 1227, 5597, 25531, 116461, 531243, 2423293, 11053979, 50423309, 230008587, 1049196317, 4785964411, 21831429421, 99585218283, 454263232573, 2072145726299, 9452202166349, 43116719379147, 196679192563037, 897162524056891, 4092454235158381
Offset: 0
References
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 78).
- Stanley, Richard P. "Some Linear Recurrences Motivated by Stern’s Diatomic Array." The American Mathematical Monthly 127.2 (2020): 99-111.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1058
- Richard P. Stanley, Some Linear Recurrences Motivated by Stern's Diatomic Array, arXiv:1901.04647 [math.CO], 2019. See p. 3.
- Zeying Xu, Graphical zonotopes with the same face vector, arXiv:1809.08764 [math.CO], 2018.
- Index entries for linear recurrences with constant coefficients, signature (5,-2).
Programs
-
GAP
a:=[1,3];; for n in [3..30] do a[n]:=5*a[n-1]-2*a[n-2]; od; a; # G. C. Greubel, Oct 23 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-2*x)/(1-5*x+2*x^2) )); // G. C. Greubel, Feb 10 2019 -
Magma
a:=[1,3]; [n le 2 select a[n] else 5*Self(n-1)-2*Self(n-2):n in [1..25]]; // Marius A. Burtea, Oct 23 2019
-
Maple
spec:= [S,{S=Sequence(Union(Prod(Sequence(Union(Z,Z)),Union(Z,Z)),Z))}, unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20); a[0]:=1: a[1]:=3: for n from 2 to 25 do a[n]:=5*a[n-1]-2*a[n-2] od: seq(a[n],n=0..25); # Emeric Deutsch
-
Mathematica
a[0]=1; a[1]=3; a[n_]:= a[n] = 5a[n-1]-2a[n-2]; Table[ a[n], {n, 0, 30}] LinearRecurrence[{5,-2},{1,3},30] (* Harvey P. Dale, Apr 08 2014 *) CoefficientList[Series[(1-2x)/(1-5x+2x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Apr 09 2014 *)
-
PARI
Vec((1-2*x)/(1-5*x+2*x^2)+O(x^30)) \\ Charles R Greathouse IV, Nov 20 2011
-
Sage
def A052984_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1-2*x)/(1-5*x+2*x^2) ).list() A052984_list(30) # G. C. Greubel, Feb 10 2019
Formula
a(n) = A005824(2n).
G.f.: (1-2*x)/(1-5*x+2*x^2).
a(n) = Sum_{alpha=RootOf(1-5*z+2*z^2)} (1 + 6*alpha)*alpha^(-1-n)/17.
a(n) = [M^(n+1)]2,2, where M is the 3 X 3 matrix defined as follows: M = [2,1,2; 1,1,1; 2,1,2]. - _Simone Severini, Jun 12 2006
a(n-1) = Sum_{k=0..n} A147703(n,k)*(-1)^k*2^(n-k), n>1. - Philippe Deléham, Nov 29 2008
a(n) = (a(n-1)^2 + 2^n)/a(n-2). - Irene Sermon, Oct 29 2013
E.g.f.: exp(5*x/2)*(sqrt(17)*cosh(sqrt(17)*x/2) + sinh(sqrt(17)*x/2))/sqrt(17). - Stefano Spezia, Jun 17 2025
Extensions
Edited by Robert G. Wilson v, Dec 29 2002
Comments