cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053003 Continued fraction for M(1,sqrt(2)).

Original entry on oeis.org

1, 5, 21, 3, 4, 14, 1, 1, 1, 1, 1, 3, 1, 15, 1, 3, 8, 36, 1, 2, 5, 2, 1, 1, 2, 2, 6, 9, 1, 1, 1, 3, 1, 2, 6, 1, 5, 1, 1, 2, 1, 13, 2, 2, 5, 1, 2, 2, 1, 5, 1, 3, 1, 3, 1, 2, 2, 2, 2, 8, 3, 1, 2, 2, 1, 10, 2, 2, 2, 3, 3, 1, 7, 1, 8, 3, 1, 1, 1, 1, 1, 1, 1, 1, 5, 2, 1, 2, 17, 1, 4, 31, 2, 2, 5, 30, 1, 8, 2, 1
Offset: 0

Views

Author

N. J. A. Sloane, Feb 21 2000

Keywords

Comments

M(a,b) is the limit of the arithmetic-geometric mean iteration applied repeatedly starting with a and b: a_0=a, b_0=b, a_{n+1}=(a_n+b_n)/2, b_{n+1}=sqrt(a_n*b_n).

Examples

			1.19814023473559220743992249228...
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, page 5.
  • J. R. Goldman, The Queen of Mathematics, 1998, p. 92.

Crossrefs

Cf. A014549, A053002 without the leading term, A053004 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[ArithmeticGeometricMean[1,Sqrt[2]],100] (* Harvey P. Dale, Feb 26 2012 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(agm(1, sqrt(2))); for (n=1, 20000, write("b053003.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 20 2009

Extensions

More terms from James Sellers, Feb 22 2000
Offset changed by Andrew Howroyd, Aug 03 2024