A053070 Primes p such that p-6, p and p+6 are consecutive primes.
53, 157, 173, 257, 263, 373, 563, 593, 607, 653, 733, 947, 977, 1103, 1123, 1187, 1223, 1367, 1747, 1753, 1907, 2287, 2417, 2677, 2903, 2963, 3307, 3313, 3637, 3733, 4013, 4457, 4597, 4657, 4993, 5107, 5113, 5303, 5387, 5393, 5563, 5807, 6073, 6263
Offset: 1
Examples
157 is separated from both the next lower prime, 151 and the next higher prime, 163, by 6.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
for i from 1 by 1 to 800 do if ithprime(i+1) = ithprime(i) + 6 and ithprime(i+2) = ithprime(i) + 12 then print(ithprime(i+1)); fi; od; # Zerinvary Lajos, Apr 27 2007
-
Mathematica
lst={};Do[p=Prime[n];If[p-Prime[n-1]==Prime[n+1]-p==6,AppendTo[lst,p]],{n,2,7!}];lst (* Vladimir Joseph Stephan Orlovsky, May 20 2010 *) Transpose[Select[Partition[Prime[Range[1000]],3,1],Differences[#]=={6,6}&]][[2]] (* Harvey P. Dale, Oct 11 2012 *)
Formula
a(n) = A047948(n) + 6. - R. J. Mathar, Apr 11 2008
Extensions
Edited by N. J. A. Sloane at the suggestion of Zak Seidov, Apr 09 2008
Comments