cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053070 Primes p such that p-6, p and p+6 are consecutive primes.

Original entry on oeis.org

53, 157, 173, 257, 263, 373, 563, 593, 607, 653, 733, 947, 977, 1103, 1123, 1187, 1223, 1367, 1747, 1753, 1907, 2287, 2417, 2677, 2903, 2963, 3307, 3313, 3637, 3733, 4013, 4457, 4597, 4657, 4993, 5107, 5113, 5303, 5387, 5393, 5563, 5807, 6073, 6263
Offset: 1

Views

Author

Harvey P. Dale, Feb 25 2000

Keywords

Comments

Balanced primes separated from the next lower and next higher prime neighbors by 6.
Subset of A006489. - R. J. Mathar, Apr 11 2008
Subset of A006562. - Zak Seidov, Feb 14 2013
a(n) == {3,7} mod 10. - Zak Seidov, Feb 14 2013
Minimal difference is 6: a(5) - a(4) = 263 - 257, a(20) - a(19) = 1753 - 1747, ... . - Zak Seidov, Feb 14 2013

Examples

			157 is separated from both the next lower prime, 151 and the next higher prime, 163, by 6.
		

Crossrefs

Cf. A047948, A006489, A006562. - Zak Seidov, Feb 14 2013

Programs

  • Maple
    for i from 1 by 1 to 800 do if ithprime(i+1) = ithprime(i) + 6 and ithprime(i+2) = ithprime(i) + 12 then print(ithprime(i+1)); fi; od; # Zerinvary Lajos, Apr 27 2007
  • Mathematica
    lst={};Do[p=Prime[n];If[p-Prime[n-1]==Prime[n+1]-p==6,AppendTo[lst,p]],{n,2,7!}];lst (* Vladimir Joseph Stephan Orlovsky, May 20 2010 *)
    Transpose[Select[Partition[Prime[Range[1000]],3,1],Differences[#]=={6,6}&]][[2]] (* Harvey P. Dale, Oct 11 2012 *)

Formula

a(n) = A047948(n) + 6. - R. J. Mathar, Apr 11 2008

Extensions

Edited by N. J. A. Sloane at the suggestion of Zak Seidov, Apr 09 2008