A053072 Primes p such that p-12, p and p+12 are consecutive primes.
211, 1511, 4409, 4691, 7841, 9871, 11299, 11411, 11731, 12841, 15161, 16619, 17431, 17851, 18341, 18731, 19739, 19949, 20161, 20521, 20731, 21661, 22051, 22259, 23801, 25621, 26041, 28069, 29599, 30059, 31051, 32479, 34171, 35129
Offset: 1
Examples
1511 is separated from both the next lower prime and the next higher prime by 12.
References
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 211, p. 61, Ellipses, Paris, 2008.
Links
- Zak Seidov, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A052188.
Programs
-
Maple
for i from 1 by 1 to 5000 do if ithprime(i+1) = ithprime(i) +12 and ithprime(i+2) = ithprime(i) + 24 then print(ithprime(i+1)); # Zerinvary Lajos, May 04 2007
-
Mathematica
lst={};Do[p=Prime[n];If[p-Prime[n-1]==Prime[n+1]-p==6*2,AppendTo[lst,p]],{n,2,2*7!}];lst (* Vladimir Joseph Stephan Orlovsky, May 20 2010 *) Transpose[Select[Partition[Prime[Range[4000]],3,1],Differences[#] == {12,12}&]][[2]] (* Harvey P. Dale, Apr 07 2013 *)
Formula
a(n) = A052188(n) + 12. - Michel Marcus, Jan 09 2015
Extensions
Corrected by Jud McCranie, Jan 04 2001
Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar
Comments