A053107 Expansion of 1/(1-8*x)^8.
1, 64, 2304, 61440, 1351680, 25952256, 449839104, 7197425664, 107961384960, 1535450808320, 20882130993152, 273366078455808, 3462636993773568, 42617070692597760, 511404848311173120, 6000483553517764608, 69005560865454292992, 779356922715719073792
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (64, -1792, 28672, -286720, 1835008, -7340032, 16777216, -16777216).
Crossrefs
Programs
-
Magma
[8^n* Binomial(n+7, 7): n in [0..20]]; // Vincenzo Librandi, Oct 16 2011
-
Mathematica
Table[Binomial[n + 7, 7]*8^n, {n, 0, 20}] (* Zerinvary Lajos, Feb 11 2010 *) CoefficientList[Series[1/(1-8x)^8,{x,0,20}],x] (* or *) LinearRecurrence[ {64,-1792,28672,-286720,1835008,-7340032,16777216,-16777216},{1,64,2304,61440,1351680,25952256,449839104,7197425664},20] (* Harvey P. Dale, Jul 19 2018 *)
-
PARI
vector(30, n, n--; 8^n*binomial(n+7,7)) \\ G. C. Greubel, Aug 16 2018
-
Sage
[lucas_number2(n, 8, 0)*binomial(n,7)/8^7 for n in range(7, 22)] # Zerinvary Lajos, Mar 13 2009
Formula
a(n) = 8^n*binomial(n+7, 7).
G.f.: 1/(1-8*x)^8.
Extensions
More terms from Harvey P. Dale, Jul 19 2018
Comments