cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053138 Binomial coefficients C(2*n+9,9).

Original entry on oeis.org

1, 55, 715, 5005, 24310, 92378, 293930, 817190, 2042975, 4686825, 10015005, 20160075, 38567100, 70607460, 124403620, 211915132, 350343565, 563921995, 886163135, 1362649145, 2054455634, 3042312350, 4431613550, 6358402050, 8996462475, 12565671261, 17341763505
Offset: 0

Views

Author

Keywords

Comments

Even-indexed members of tenth column of Pascal's triangle A007318.
Number of standard tableaux of shape (2n+1,1^9). - Emeric Deutsch, May 30 2004

Crossrefs

Programs

Formula

a(n) = binomial(2*n+9, 9) = A000582(2*n+9).
G.f.: (1 + 45*x + 210*x^2 + 210*x^3 + 45*x^4 + x^5) / (1-x)^10.
G.f.: (1 + x) * (x^4 + 44*x^3 + 166*x^2 + 44*x + 1) / (1-x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n > 9. - Wesley Ivan Hurt, Dec 05 2016
From Amiram Eldar, Nov 03 2022: (Start)
Sum_{n>=0} 1/a(n) = 1152*log(2) - 27912/35.
Sum_{n>=0} (-1)^n/a(n) = 36*Pi - 3924/35. (End)