cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053222 First differences of sigma(n).

Original entry on oeis.org

2, 1, 3, -1, 6, -4, 7, -2, 5, -6, 16, -14, 10, 0, 7, -13, 21, -19, 22, -10, 4, -12, 36, -29, 11, -2, 16, -26, 42, -40, 31, -15, 6, -6, 43, -53, 22, -4, 34, -48, 54, -52, 40, -6, -6, -24, 76, -67, 36, -21, 26, -44, 66, -48, 48, -40, 10, -30, 108, -106, 34, 8, 23, -43, 60, -76, 58
Offset: 1

Views

Author

Asher Auel, Jan 06 2000

Keywords

Comments

a(A002961(n)) = 0. - Reinhard Zumkeller, Dec 28 2011
Considering the values |a(n)| <= 100 for n < 10^13, we notice that some odd values do not appear within that range, namely 9, 17, 25, 27, 33, 37, 39, 45, 47, 49, 51, 55, 57, 59, 69, 71, 77, 81, 83, 87, 89, 91, 95, 97, and 99. All the other absolute values <= 100 appear for n < 3600, with the exception of a(1159742043) = 62. - Giovanni Resta, Jun 26 2017

Crossrefs

Programs

  • GAP
    List([1..70], n -> Sigma(n+1)-Sigma(n)); # Muniru A Asiru, Feb 14 2018
    
  • Haskell
    a053222 n = a053222_list !! (n-1)
    a053222_list = zipWith (-) (tail a000203_list) a000203_list
    -- Reinhard Zumkeller, Oct 16 2011
    
  • Magma
    [DivisorSigma(1, n+1) - DivisorSigma(1,n): n in [1..100]]; // G. C. Greubel, Sep 03 2018
  • Maple
    A053222 := proc(n)
    numtheory[sigma](n+1)-numtheory[sigma](n) ;
    end proc: # R. J. Mathar, Jul 08 2013
  • Mathematica
    DivisorSigma[1, Range[100]] // Differences (* Jean-François Alcover, Jan 26 2018 *)
  • PARI
    a(n)=sigma(n+1)-sigma(n) \\ Charles R Greathouse IV, Mar 09 2014
    

Formula

a(n) = A000203(n+1) - A000203(n).
G.f.: 2*(x-1)/(Q(0) - 2*x^2 + 2*x), where Q(k)= (2*x^(k+2) - x - 1)*k - 1 - 2*x + 3*x^(k+2) - x*(k+3)*(k+1)*(1-x^(k+2))^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 16 2013
G.f.: -1 + (1 - x)*Sum_{k>=1} k*x^(k-1)/(1 - x^k). - Ilya Gutkovskiy, Jan 29 2017