A053222 First differences of sigma(n).
2, 1, 3, -1, 6, -4, 7, -2, 5, -6, 16, -14, 10, 0, 7, -13, 21, -19, 22, -10, 4, -12, 36, -29, 11, -2, 16, -26, 42, -40, 31, -15, 6, -6, 43, -53, 22, -4, 34, -48, 54, -52, 40, -6, -6, -24, 76, -67, 36, -21, 26, -44, 66, -48, 48, -40, 10, -30, 108, -106, 34, 8, 23, -43, 60, -76, 58
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Programs
-
GAP
List([1..70], n -> Sigma(n+1)-Sigma(n)); # Muniru A Asiru, Feb 14 2018
-
Haskell
a053222 n = a053222_list !! (n-1) a053222_list = zipWith (-) (tail a000203_list) a000203_list -- Reinhard Zumkeller, Oct 16 2011
-
Magma
[DivisorSigma(1, n+1) - DivisorSigma(1,n): n in [1..100]]; // G. C. Greubel, Sep 03 2018
-
Maple
A053222 := proc(n) numtheory[sigma](n+1)-numtheory[sigma](n) ; end proc: # R. J. Mathar, Jul 08 2013
-
Mathematica
DivisorSigma[1, Range[100]] // Differences (* Jean-François Alcover, Jan 26 2018 *)
-
PARI
a(n)=sigma(n+1)-sigma(n) \\ Charles R Greathouse IV, Mar 09 2014
Formula
G.f.: 2*(x-1)/(Q(0) - 2*x^2 + 2*x), where Q(k)= (2*x^(k+2) - x - 1)*k - 1 - 2*x + 3*x^(k+2) - x*(k+3)*(k+1)*(1-x^(k+2))^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 16 2013
G.f.: -1 + (1 - x)*Sum_{k>=1} k*x^(k-1)/(1 - x^k). - Ilya Gutkovskiy, Jan 29 2017
Comments