cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A059888 a(n) = |{m : multiplicative order of 6 mod m=n}|.

Original entry on oeis.org

2, 2, 2, 4, 4, 10, 2, 8, 12, 40, 6, 108, 6, 42, 40, 48, 30, 100, 6, 332, 10, 22, 30, 376, 26, 118, 48, 332, 2, 1436, 6, 448, 54, 222, 88, 7952, 62, 54, 54, 2680, 6, 698, 30, 476, 1476, 222, 14, 7632, 28, 438, 478, 1916, 14, 1872, 84, 11896, 118, 58, 14, 784452
Offset: 1

Views

Author

Vladeta Jovovic, Feb 06 2001

Keywords

Comments

The multiplicative order of a mod m, GCD(a,m)=1, is the smallest natural number d for which a^d = 1 (mod m).
Also, number of primitive factors of 6^n - 1. - Max Alekseyev, May 03 2022

Crossrefs

Number of primitive factors of b^n - 1: A059499 (b=2), A059885(b=3), A059886 (b=4), A059887 (b=5), this sequence (b=6), A059889 (b=7), A059890 (b=8), A059891 (b=9), A059892 (b=10).
Column k=6 of A212957.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(mobius(n/d)*tau(6^d-1), d=divisors(n)):
    seq(a(n), n=1..50);  # Alois P. Heinz, Oct 12 2012
  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#] * DivisorSigma[0, 6^#-1] &]; Array[a, 60] (* Amiram Eldar, Jan 25 2025 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d) * numdiv(6^d-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = Sum_{ d divides n } mu(n/d)*tau(6^d-1), (mu(n) = Moebius function A008683, tau(n) = number of divisors of n A000005).

A050978 Haupt-exponents of 6 modulo integers relatively prime to 6.

Original entry on oeis.org

1, 2, 10, 12, 16, 9, 11, 5, 14, 6, 2, 4, 40, 3, 23, 14, 26, 10, 58, 60, 12, 33, 35, 36, 10, 78, 82, 16, 88, 12, 9, 12, 10, 102, 106, 108, 112, 11, 16, 110, 25, 126, 130, 18, 136, 23, 60, 14, 37, 150, 6, 156, 22, 27, 83, 156, 43, 10, 178, 60, 4, 80, 19, 96, 14, 198, 14
Offset: 1

Views

Author

Keywords

Crossrefs

A054711 Multiplicative order of 11 mod n, where gcd(n, 11) = 1.

Original entry on oeis.org

1, 1, 2, 2, 1, 2, 3, 2, 6, 1, 2, 12, 3, 2, 4, 16, 6, 3, 2, 6, 22, 2, 5, 12, 18, 6, 28, 2, 30, 8, 16, 3, 6, 6, 3, 12, 2, 40, 6, 7, 6, 22, 46, 4, 21, 5, 16, 12, 26, 18, 6, 6, 28, 58, 2, 4, 30, 6, 16, 12, 66, 16, 22, 3, 70, 6, 72, 6, 10, 6, 12, 39, 4, 54, 40, 41
Offset: 1

Views

Author

Henry Bottomley, Apr 20 2000

Keywords

Comments

The original version "Number of powers of 11 modulo n" that was similar to A054703-A054717 is now in A351524. - Georg Fischer, Feb 13 2022

Crossrefs

Cf. A053446 (of 3 mod n), A053448 (5), A053449 (6), A053450 (7), A053452 (9).
Cf. A351524.

Programs

  • Mathematica
    MultiplicativeOrder[11, #] & /@ Select[ Range@ 90, GCD[11, #] == 1 &] (* Robert G. Wilson v, Apr 05 2011 *)
  • PARI
    lista(nn) = {for(n=1, nn, if (gcd(n, 11) == 1, print1(znorder(Mod(11, n)), ", ")););} \\ Michel Marcus, Feb 09 2015

Extensions

Corrected by Michel Marcus, Feb 11 2015
Showing 1-3 of 3 results.