A053506 a(n) = (n-1)*n^(n-2).
0, 1, 6, 48, 500, 6480, 100842, 1835008, 38263752, 900000000, 23579476910, 681091006464, 21505924728444, 737020860878848, 27246730957031250, 1080863910568919040, 45798768824157052688, 2064472028642102280192, 98646963440126439346902, 4980736000000000000000000
Offset: 1
Keywords
References
- A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.2.36)
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Prop. 5.3.2.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..250
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Eric Weisstein's World of Mathematics, Graph Edge
Crossrefs
Programs
-
GAP
List([1..20], n-> (n-1)*n^(n-2)) # G. C. Greubel, May 15 2019
-
Magma
[(n-1)*n^(n-2): n in [1..20]]; // G. C. Greubel, May 15 2019
-
Mathematica
Table[(n-1)*n^(n-2), {n,20}]
-
PARI
vector(20, n, (n-1)*n^(n-2)) \\ G. C. Greubel, Jan 18 2017
-
Sage
[(n-1)*n^(n-2) for n in (1..20)] # G. C. Greubel, May 15 2019
Formula
E.g.f.: LambertW(-x)^2/2. - Vladeta Jovovic, Apr 07 2001
E.g.f. if offset 0: W(-x)^2/((1+W(-x))*x), W(x) Lambert's function (principal branch).
The sequence 1, 1, 6, 48, ... satisfies a(n) = (n*(n+1)^n + 0^n)/(n+1); it is the main diagonal of A085388. - Paul Barry, Jun 30 2003
a(n) = Sum_{i=1..n-1} binomial(n-1,i-1)*i^(i-2)*(n-i)^(n-i). - Dmitry Kruchinin, Oct 28 2013
If offset = 0 and a(0) = 1 then a(n) = Sum_{k=0..n} (-1)^(n-k)* binomial(-k,-n)*n^k (cf. A195242). - Peter Luschny, Apr 11 2016
Comments