cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053524 a(n) = (6^n - (-2)^n)/8.

Original entry on oeis.org

0, 1, 4, 28, 160, 976, 5824, 35008, 209920, 1259776, 7558144, 45349888, 272097280, 1632587776, 9795518464, 58773127168, 352638730240, 2115832446976, 12694994550784, 76169967566848, 457019804876800, 2742118830309376, 16452712979759104
Offset: 0

Views

Author

Keywords

Comments

The ratio a(n+1)/a(n) converges to 6 as n approaches infinity. - Felix P. Muga II, Mar 10 2014

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.1(b).
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, pp. 194-196.

Crossrefs

Cf. A015518.

Programs

Formula

E.g.f.: (exp(6*x) - exp(-2*x))/8.
a(n) = 2^(n-3) * (3^n - (-1)^n) = 2^(n-3)*A105723(n).
a(n) = 4*a(n-1) + 12*a(n-2), with a(0)=0, a(1)=1.
G.f.: x / ((1+2*x)*(1-6*x)). - Colin Barker, Mar 11 2014