A053529 a(n) = n! * number of partitions of n.
1, 1, 4, 18, 120, 840, 7920, 75600, 887040, 10886400, 152409600, 2235340800, 36883123200, 628929100800, 11769069312000, 230150688768000, 4833164464128000, 105639166144512000, 2464913876705280000, 59606099200327680000, 1525429559126753280000, 40464026199993876480000
Offset: 0
References
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.12, solution.
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- M. Holloway, M. Shattuck, Commuting pairs of functions on a finite set, PU.M.A, Volume 24 (2013), Issue No. 1.
- M. Holloway, M. Shattuck, Commuting pairs of functions on a finite set, Research Gate, 2015.
- R. P. Stanley, Pairs with equal squares, Problem 10654, Amer. Math. Monthly, 107 (April 2000), solution p. 368.
- Wikipedia, Young tableau
Crossrefs
Programs
-
Magma
a:= func< n | NumberOfPartitions(n)*Factorial(n) >; [ a(n) : n in [0..25]]; // Vincenzo Librandi, Jan 17 2019
-
Maple
seq(count(Permutation(n))*count(Partition(n)),n=1..20); # Zerinvary Lajos, Oct 16 2006 with(combinat): A053529 := proc(n): n! * numbpart(n) end: seq(A053529(n), n=0..20); # Johannes W. Meijer, Jul 28 2016
-
Mathematica
Table[PartitionsP[n] n!, {n, 0, 20}] (* T. D. Noe, Jun 19 2012 *)
-
PARI
N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, x^k/(1-x^k)/k)))) \\ Joerg Arndt, Apr 16 2010
-
PARI
N=66; x='x+O('x^N); Vec(serlaplace(sum(n=0, N, x^n/prod(k=1,n,1-x^k)))) \\ Joerg Arndt, Jan 29 2011
-
PARI
a(n) = n!*numbpart(n); \\ Michel Marcus, Jul 28 2016
-
Python
from math import factorial from sympy import npartitions def A053529(n): return factorial(n)*npartitions(n) # Chai Wah Wu, Jul 10 2023
Formula
E.g.f: Sum_{n>=0} x^n/(Product_{k=1..n} 1-x^k) = exp(Sum_{n>=1} (x^n/n)/(1-x^n)). - Joerg Arndt, Jan 29 2011
a(n) = Sum{k=1..n} (((n-1)!/(n-k)!)*sigma(k)*a(n-k)), n > 0, and a(0)=1. See A274760. - Johannes W. Meijer, Jul 28 2016
a(n) ~ sqrt(Pi/6)*exp(sqrt(2/3)*Pi*sqrt(n))*n^n/(2*exp(n)*sqrt(n)). - Ilya Gutkovskiy, Jul 28 2016
Comments