A053611 Numbers k such that 1 + 4 + 9 + ... + k^2 = 1 + 2 + 3 + ... + m for some m.
1, 5, 6, 85
Offset: 1
Examples
1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 1 + 2 + 3 + ... + 10, so 5 is in the sequence.
References
- E. T. Avanesov, The Diophantine equation 3y(y+1) = x(x+1)(2x+1), Volz. Mat. Sb. Vyp., 8 (1971), 3-6.
- R. K. Guy, Unsolved Problems in Number Theory, Section D3.
- Joe Roberts, Lure of the Integers, page 245 (entry for 645).
Links
- R. Finkelstein, H. London, On triangular numbers which are sums of consecutive squares, J. Number Theory 4 (1972), 455-462.
- Eric Weisstein's World of Mathematics, Square Pyramidal Number
Programs
-
Maple
istriangular:=proc(n) local t1; t1:=floor(sqrt(2*n)); if n = t1*(t1+1)/2 then RETURN(true) else RETURN(false); fi; end; M:=1000; for n from 1 to M do if istriangular(n*(n+1)*(2*n+1)/6) then lprint(n,n*(n+1)*(2*n+1)/6); fi; od: # N. J. A. Sloane # second Maple program: q:= n-> issqr(8*sum(j^2, j=1..n)+1): select(q, [$1..100])[]; # Alois P. Heinz, Oct 10 2024
-
Mathematica
Select[Range[90], IntegerQ[(Sqrt[(4/3) * (# + 3 * #^2 + 2 * #^3) + 1] - 1)/2] &] (* Harvey P. Dale, Sep 22 2014 *)
Extensions
Edited by N. J. A. Sloane, May 25 2008
Comments