cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053795 Composite numbers ending in 1, 3, 7 or 9.

Original entry on oeis.org

9, 21, 27, 33, 39, 49, 51, 57, 63, 69, 77, 81, 87, 91, 93, 99, 111, 117, 119, 121, 123, 129, 133, 141, 143, 147, 153, 159, 161, 169, 171, 177, 183, 187, 189, 201, 203, 207, 209, 213, 217, 219, 221, 231, 237, 243, 247, 249, 253, 259, 261, 267, 273, 279, 287
Offset: 1

Views

Author

G. L. Honaker, Jr., Apr 01 2000

Keywords

Comments

Composite numbers not divisible by 2 or 5. - Lekraj Beedassy, Jul 05 2004
Composite numbers ending in 1, 3, 7 or 9 are values (some shared within sets, because some values are numbers with multiple factors) of the following sets of binomial products:
{(10x+3)*(10y+7), (10x+9)*(10y+9), (10x+11)*(10y+11)}, {(10x+3)*(10y+11), (10x+7)*(10y+9)},
{(10x+3)*(10y+9), (10x+7)*(10y+11)}, and
{(10x+3)*(10y+3), (10x+7)*(10y+7), (10x+9)*(10y+11)}, with x, y integers >= 0. - Marvin Y. Hubble, Jul 12 2013 and May 12 2014 and Sep 27 2019

Crossrefs

Subsequence of A045572.

Programs

  • Maple
    remove(isprime, [seq(seq(10*i+j,j=[3,7,9,11]),i=0..100)]); # Robert Israel, Jan 29 2018
  • Mathematica
    Select[Range[300],CompositeQ[#]&&OddQ[#]&&!Divisible[#,5]&] (* Harvey P. Dale, Jul 13 2014 *)
  • PARI
    is(n)=gcd(n,10)==1 && !isprime(n) && n>1 \\ Charles R Greathouse IV, Jan 30 2018
    
  • Python
    from sympy import isprime
    def ok(n): return n > 1 and n%10 in {1, 3, 7, 9} and not isprime(n)
    print(list(filter(ok, range(2, 288)))) # Michael S. Branicky, Sep 21 2021

Formula

a(n) = 2.5n + 2.5n/log n + O(n/log^2 n). - Charles R Greathouse IV, Jan 30 2018

Extensions

More terms from James Sellers, Apr 08 2000
Offset corrected by Arkadiusz Wesolowski, Dec 18 2011