cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053808 Partial sums of A001891.

Original entry on oeis.org

1, 5, 15, 36, 76, 148, 273, 485, 839, 1424, 2384, 3952, 6505, 10653, 17383, 28292, 45964, 74580, 120905, 195885, 317231, 513600, 831360, 1345536, 2177521, 3523733, 5701983, 9226500, 14929324, 24156724, 39087009, 63244757, 102332855, 165578768, 267912848
Offset: 0

Views

Author

Barry E. Williams, Mar 27 2000

Keywords

Comments

Antidiagonal sums of the convolution array A213579 and row 1 of the convolution array A213590. - Clark Kimberling, Jun 18 2012
Also number CG(n,2) of complete games with n players of 2 types. - N. J. A. Sloane, Dec 29 2012

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Convolution of A000290 (squares) with A000045, n >= 1. (Fibonacci) - Wolfdieter Lang, Apr 10 2000
Right-hand column 7 of triangle A011794.

Programs

  • GAP
    List([0..40], n-> Fibonacci(n+8) - (n^2 +8*n+20)); # G. C. Greubel, Jul 06 2019
  • Magma
    [Fibonacci(n+8) - (n^2+8*n+20): n in [0..40]]; // G. C. Greubel, Jul 06 2019
    
  • Mathematica
    Table[Fibonacci[n+8] -(n^2 +8*n+20), {n,0,40}] (* G. C. Greubel, Jul 06 2019 *)
    LinearRecurrence[{4,-5,1,2,-1},{1,5,15,36,76},40] (* Harvey P. Dale, Apr 14 2022 *)
  • PARI
    vector(40, n, n--; fibonacci(n+8) - (n^2 +8*n+20)) \\ G. C. Greubel, Jul 06 2019
    
  • Sage
    [fibonacci(n+8) - (n^2 +8*n+20) for n in (0..20)] # G. C. Greubel, Jul 06 2019
    

Formula

a(n) = a(n-1) + a(n-2) + (n+1)^2, a(-n)=0.
G.f.: (1+x)/((1-x-x^2)*(1-x)^3).
a(n) = Fibonacci(n+6) - (n^2 + 4*n + 8), n >= 2 (see p. 184 of FQ reference).
a(n-2) = Sum_{i=0..n} Fibonacci(i)*(n-i)^2. - Benoit Cloitre, Mar 06 2004