cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053828 Sum of digits of (n written in base 7).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 3, 4, 5, 6, 7, 8, 9, 4, 5, 6, 7, 8, 9, 10, 5, 6, 7, 8, 9, 10, 11, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 3, 4, 5, 6, 7, 8, 9, 4, 5, 6, 7, 8, 9, 10, 5, 6, 7, 8, 9, 10, 11, 6, 7, 8, 9, 10, 11, 12, 7, 8, 9, 10, 11
Offset: 0

Views

Author

Henry Bottomley, Mar 28 2000

Keywords

Comments

Also the fixed point of the morphism 0->{0,1,2,3,4,5,6}, 1->{1,2,3,4,5,6,7}, 2->{2,3,4,5,6,7,8}, etc. - Robert G. Wilson v, Jul 27 2006

Examples

			a(20) = 2 + 6 = 8 because 20 = 26_7.
From _Omar E. Pol_, Feb 21 2010: (Start)
It appears that this can be written as a triangle (see the conjecture in the entry A000120):
0,
1,2,3,4,5,6,
1,2,3,4,5,6,7,2,3,4,5,6,7,8,3,4,5,6,7,8,9,4,5,6,7,8,9,10,5,6,7,8,9,10,11,6,7,8,9,10,11,12,
1,2,3,4,5,6,7,2,3,4,5,6,7,8,3,4,5,6,7,8,9,4,5,6,7,8,9,10,5,6,7,8,9,10,11,6,7,8,9,10,11,12,7,8,9,10,11,...
where the rows converge to A173527. (End)
		

Crossrefs

Programs

  • Magma
    [&+Intseq(n, 7): n in [0..100]]; // Vincenzo Librandi, Jan 03 2020
  • Mathematica
    Table[Plus @@ IntegerDigits[n, 7], {n, 0, 100}] (* or *)
    Nest[ Flatten[ #1 /. a_Integer -> Table[a + i, {i, 0, 6}]] &, {0}, 4] (* Robert G. Wilson v, Jul 27 2006 *)
  • PARI
    a(n)=if(n<1,0,if(n%7,a(n-1)+1,a(n/7)))
    
  • PARI
    a(n) = my(d=digits(n, 7)); vecsum(d); \\ Michel Marcus, Jan 07 2017
    

Formula

From Benoit Cloitre, Dec 19 2002: (Start)
a(0) = 0, a(7n+i) = a(n) + i for 0 <= i <= 6.
a(n) = n - 6*(Sum_{k>0} floor(n/7^k)) = n - 6*A054896(n). (End)
a(n) = A138530(n,7) for n > 6. - Reinhard Zumkeller, Mar 26 2008
a(n) = Sum_{k>=0} A031007(n,k). - Philippe Deléham, Oct 21 2011
a(0) = 0; a(n) = a(n - 7^floor(log_7(n))) + 1. - Ilya Gutkovskiy, Aug 24 2019
Sum_{n>=1} a(n)/(n*(n+1)) = 7*log(7)/6 (Shallit, 1984). - Amiram Eldar, Jun 03 2021