cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A054013 Chowla function of n read modulo n.

Original entry on oeis.org

0, 0, 0, 2, 0, 5, 0, 6, 3, 7, 0, 3, 0, 9, 8, 14, 0, 2, 0, 1, 10, 13, 0, 11, 5, 15, 12, 27, 0, 11, 0, 30, 14, 19, 12, 18, 0, 21, 16, 9, 0, 11, 0, 39, 32, 25, 0, 27, 7, 42, 20, 45, 0, 11, 16, 7, 22, 31, 0, 47, 0, 33, 40, 62, 18, 11, 0, 57, 26, 3, 0, 50, 0, 39, 48, 63, 18, 11, 0, 25, 39, 43, 0
Offset: 1

Views

Author

Asher Auel, Jan 17 2000

Keywords

Comments

Chowla's function (A048050) = sum of divisors of n except 1 and n.

Crossrefs

Programs

  • Maple
    with(numtheory): [seq((sigma(i) - i - 1) mod i, i=2..100)];
  • Mathematica
    Table[Mod[DivisorSigma[1,n]-n-1,n],{n,90}] (* Harvey P. Dale, Dec 01 2011 *)
  • PARI
    A054013(n) = ((sigma(n)-n-1) % n); \\ Antti Karttunen, Oct 30 2017

Formula

a(n) = A048050(n) mod n

A054015 a(n) is Chowla function of n read modulo (number of proper divisors of n), a(1) = 0 by convention.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 0, 2, 2, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 2, 0, 6, 0, 0, 2, 1, 0, 6, 0, 0, 1, 0, 0, 4, 0, 4, 2, 1, 0, 3, 1, 2, 2, 0, 0, 2, 1, 0, 1, 1, 0, 8, 0, 0, 0, 2, 0, 0, 0, 2, 2, 3, 0, 1, 0, 0, 3, 3, 0, 5, 0, 6, 3, 1, 0, 7, 1, 0, 2, 0, 0, 0, 2, 0, 1, 1, 0, 1, 0, 2, 1, 4, 0, 1, 0, 0, 2
Offset: 1

Views

Author

Asher Auel, Jan 17 2000

Keywords

Comments

Chowla's function (A048050) = sum of divisors of n except 1 and n.

Crossrefs

Programs

  • Maple
    with(numtheory): [seq((sigma(i)-i-1) mod (tau(i)-1),i=2..120);#i>1
  • PARI
    A054015(n) = if(1==n,0,((sigma(n)-n-1) % (numdiv(n)-1))); \\ Antti Karttunen, Oct 20 2017

Formula

a(1) = 0; for n > 1, a(n) = A048050(n) mod A032741(n).

Extensions

Description clarified by Antti Karttunen, Oct 20 2017

A054022 Chowla function of n is divisible by the number of divisors of n.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 23, 27, 29, 31, 32, 35, 36, 37, 39, 41, 43, 47, 50, 51, 53, 55, 59, 61, 67, 71, 73, 75, 79, 83, 87, 89, 91, 95, 97, 98, 101, 103, 107, 109, 111, 113, 115, 119, 123, 127, 131, 135, 137, 139, 143, 149, 151, 155, 157, 159, 162, 163
Offset: 1

Views

Author

Asher Auel, Jan 19 2000

Keywords

Comments

Chowla's function (A048050) = sum of divisors of n except 1 and n.

Crossrefs

Complement is A054023 Cf. A000005, A048050, A054014.

Programs

  • Maple
    with(numtheory):
    [seq(`if`((sigma(i)-i-1) mod tau(i)=0,i,print( )),i=1..1000)];
  • Mathematica
    Select[Range[200],Divisible[DivisorSigma[1,#]-1-#,DivisorSigma[0,#]]&] (* Harvey P. Dale, Mar 11 2012 *)

A054023 Chowla function of n is not divisible by the number of divisors of n.

Original entry on oeis.org

4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 24, 25, 26, 28, 30, 33, 34, 38, 40, 42, 44, 45, 46, 48, 49, 52, 54, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 76, 77, 78, 80, 81, 82, 84, 85, 86, 88, 90, 92, 93, 94, 96, 99, 100, 102, 104, 105, 106, 108, 110, 112, 114
Offset: 1

Views

Author

Asher Auel, Jan 19 2000

Keywords

Comments

Chowla's function (A048050) = sum of divisors of n except 1 and n.

Crossrefs

Complement is A054022.

Programs

  • Maple
    with(numtheory):
    [seq(`if`((sigma(i)-i-1) mod tau(i) <> 0,i,print( )),i=1..1000)];
  • Mathematica
    cfQ[n_]:=!Divisible[DivisorSigma[1,n]-1-n,DivisorSigma[0,n]]; Select[ Range[ 150],cfQ] (* Harvey P. Dale, Jul 22 2014 *)
Showing 1-4 of 4 results.