cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A054013 Chowla function of n read modulo n.

Original entry on oeis.org

0, 0, 0, 2, 0, 5, 0, 6, 3, 7, 0, 3, 0, 9, 8, 14, 0, 2, 0, 1, 10, 13, 0, 11, 5, 15, 12, 27, 0, 11, 0, 30, 14, 19, 12, 18, 0, 21, 16, 9, 0, 11, 0, 39, 32, 25, 0, 27, 7, 42, 20, 45, 0, 11, 16, 7, 22, 31, 0, 47, 0, 33, 40, 62, 18, 11, 0, 57, 26, 3, 0, 50, 0, 39, 48, 63, 18, 11, 0, 25, 39, 43, 0
Offset: 1

Views

Author

Asher Auel, Jan 17 2000

Keywords

Comments

Chowla's function (A048050) = sum of divisors of n except 1 and n.

Crossrefs

Programs

  • Maple
    with(numtheory): [seq((sigma(i) - i - 1) mod i, i=2..100)];
  • Mathematica
    Table[Mod[DivisorSigma[1,n]-n-1,n],{n,90}] (* Harvey P. Dale, Dec 01 2011 *)
  • PARI
    A054013(n) = ((sigma(n)-n-1) % n); \\ Antti Karttunen, Oct 30 2017

Formula

a(n) = A048050(n) mod n

A054014 Chowla function of n read modulo (the number of divisors of n).

Original entry on oeis.org

0, 0, 0, 2, 0, 1, 0, 2, 0, 3, 0, 3, 0, 1, 0, 4, 0, 2, 0, 3, 2, 1, 0, 3, 2, 3, 0, 3, 0, 1, 0, 0, 2, 3, 0, 0, 0, 1, 0, 1, 0, 5, 0, 3, 2, 1, 0, 5, 1, 0, 0, 3, 0, 1, 0, 7, 2, 3, 0, 11, 0, 1, 4, 6, 2, 5, 0, 3, 2, 1, 0, 2, 0, 3, 0, 3, 2, 1, 0, 5, 4, 3, 0, 7, 2, 1, 0, 3, 0, 11, 0, 3, 2, 1, 0, 11, 0, 0, 2, 8, 0, 1, 0
Offset: 1

Views

Author

Asher Auel, Jan 17 2000

Keywords

Comments

Chowla's function (A048050) = sum of divisors of n except 1 and n.

Crossrefs

Programs

  • Maple
    with(numtheory): [seq((sigma(i)-i-1) mod tau(i),i=1..120)];
  • Mathematica
    Array[Mod[DivisorSigma[1, #] - # - 1, DivisorSigma[0, #]] &, 103] (* Michael De Vlieger, Oct 30 2017 *)
  • PARI
    A054014(n) = ((sigma(n)-n-1) % numdiv(n)); \\ Antti Karttunen, Oct 30 2017

Formula

a(n) = A048050(n) mod A000005(n).

A054020 Chowla's function of n is not divisible by the number of proper divisors of n.

Original entry on oeis.org

6, 9, 10, 15, 16, 20, 21, 22, 25, 28, 30, 33, 34, 36, 39, 42, 44, 45, 46, 48, 49, 50, 51, 54, 55, 57, 58, 60, 64, 68, 69, 70, 72, 75, 76, 78, 80, 81, 82, 84, 85, 87, 91, 93, 94, 96, 98, 99, 100, 102, 105, 106, 108, 111, 114, 115, 116, 117, 118, 120, 121, 123, 124, 126
Offset: 1

Views

Author

Asher Auel, Jan 19 2000

Keywords

Comments

Chowla's function (A048050) = sum of divisors of n except 1 and n.

Crossrefs

Complement is A054021.

Programs

  • Maple
    with(numtheory):
    [seq(`if`((sigma(i)-i-1) mod (tau(i)-1) <> 0,i,print( )),i=2..500)];
  • Mathematica
    Select[Range[2,150],!Divisible[DivisorSigma[1,#]-#-1,DivisorSigma[ 0,#]- 1]&] (* Harvey P. Dale, May 27 2014 *)

A054021 Numbers n such that Chowla's function of n is divisible by the number of proper divisors of n.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 11, 12, 13, 14, 17, 18, 19, 23, 24, 26, 27, 29, 31, 32, 35, 37, 38, 40, 41, 43, 47, 52, 53, 56, 59, 61, 62, 63, 65, 66, 67, 71, 73, 74, 77, 79, 83, 86, 88, 89, 90, 92, 95, 97, 101, 103, 104, 107, 109, 110, 112, 113, 119, 122, 125, 127, 128, 131, 134, 136
Offset: 1

Views

Author

Asher Auel, Jan 19 2000

Keywords

Comments

Chowla's function (A048050) = sum of divisors of n except 1 and n.

Crossrefs

Complement is A054020.

Programs

  • Maple
    with(numtheory):
    [seq(`if`((sigma(i)-i-1) mod (tau(i)-1)=0,i,print( )),i=2..1000)];
  • Mathematica
    Select[Range[2,150],Divisible[DivisorSigma[1,#]-1-#,DivisorSigma[ 0,#]-1]&] (* Harvey P. Dale, Aug 13 2018 *)
Showing 1-4 of 4 results.