cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A045768 Numbers k such that sigma(k) == 2 (mod k).

Original entry on oeis.org

1, 20, 104, 464, 650, 1952, 130304, 522752, 8382464, 134193152, 549754241024, 8796086730752, 140737463189504, 144115187270549504
Offset: 1

Views

Author

Keywords

Comments

Equivalently, Chowla function of k is congruent to 1 (mod k).
If p=2^i-3 is prime, then 2^(i-1)*p is a term of the sequence. 650 is in the sequence, but is not of this form.
Terms k from a(2) to a(14) satisfy sigma(k) = 2*k + 2, implying that sigma(k) == 0 (mod k+1). It is not known if this holds in general, for there might be solutions of sigma(k)=3k+2 or 4k+2 or ... (Comments from Jud McCranie and Dean Hickerson, updated by Jon E. Schoenfield, Sep 25 2021 and by Max Alekseyev, May 23 2025).
k | sigma(k) produces the multiperfect numbers (A007691). It is an open question whether k | sigma(k) - 1 iff k is a prime or 1. It is not known if there exist solutions to sigma(k) = 2k+1.
Sequence also gives the nonprime solutions to sigma(k) == 0 (mod k+1), k > 1. - Benoit Cloitre, Feb 05 2002
Sequence seems to give nonprime k such that the numerator of the sum of the reciprocals of the divisors of k equals k+1 (nonprime k such that A017665(k)=k+1). - Benoit Cloitre, Apr 04 2002
For k > 1, composite numbers k such that A108775(k) = floor(sigma(k)/k) = sigma(k) mod k = A054024(k). Complement of primes (A000040) with respect to A230606. There are no numbers k > 2 such that sigma(x) = k*(x+1) has a solution. - Jaroslav Krizek, Dec 05 2013

Examples

			sigma(650) = 1302 == 2 (mod 650).
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, B2.

Crossrefs

Numbers k such that A054013(k)=1.

Programs

  • Mathematica
    Do[If[Mod[DivisorSigma[1, n]-2, n]==0, Print[n]], {n, 1, 10^8}]
    Join[{1}, Select[Range[8000000], Mod[DivisorSigma[1, #], #]==2 &]] (* Vincenzo Librandi, Mar 11 2014 *)
  • PARI
    is(n)=sigma(n)%n==2 || n==1 \\ Charles R Greathouse IV, Mar 09 2014

Extensions

More terms from Jud McCranie, Dec 22 1999.
a(11) from Donovan Johnson, Mar 01 2012
a(12) from Giovanni Resta, Apr 02 2014
a(13) from Jud McCranie, Jun 02 2019
Edited and a(14) from Jon E. Schoenfield confirmed by Max Alekseyev, May 23 2025

A054014 Chowla function of n read modulo (the number of divisors of n).

Original entry on oeis.org

0, 0, 0, 2, 0, 1, 0, 2, 0, 3, 0, 3, 0, 1, 0, 4, 0, 2, 0, 3, 2, 1, 0, 3, 2, 3, 0, 3, 0, 1, 0, 0, 2, 3, 0, 0, 0, 1, 0, 1, 0, 5, 0, 3, 2, 1, 0, 5, 1, 0, 0, 3, 0, 1, 0, 7, 2, 3, 0, 11, 0, 1, 4, 6, 2, 5, 0, 3, 2, 1, 0, 2, 0, 3, 0, 3, 2, 1, 0, 5, 4, 3, 0, 7, 2, 1, 0, 3, 0, 11, 0, 3, 2, 1, 0, 11, 0, 0, 2, 8, 0, 1, 0
Offset: 1

Views

Author

Asher Auel, Jan 17 2000

Keywords

Comments

Chowla's function (A048050) = sum of divisors of n except 1 and n.

Crossrefs

Programs

  • Maple
    with(numtheory): [seq((sigma(i)-i-1) mod tau(i),i=1..120)];
  • Mathematica
    Array[Mod[DivisorSigma[1, #] - # - 1, DivisorSigma[0, #]] &, 103] (* Michael De Vlieger, Oct 30 2017 *)
  • PARI
    A054014(n) = ((sigma(n)-n-1) % numdiv(n)); \\ Antti Karttunen, Oct 30 2017

Formula

a(n) = A048050(n) mod A000005(n).

A054015 a(n) is Chowla function of n read modulo (number of proper divisors of n), a(1) = 0 by convention.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 0, 2, 2, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 2, 0, 6, 0, 0, 2, 1, 0, 6, 0, 0, 1, 0, 0, 4, 0, 4, 2, 1, 0, 3, 1, 2, 2, 0, 0, 2, 1, 0, 1, 1, 0, 8, 0, 0, 0, 2, 0, 0, 0, 2, 2, 3, 0, 1, 0, 0, 3, 3, 0, 5, 0, 6, 3, 1, 0, 7, 1, 0, 2, 0, 0, 0, 2, 0, 1, 1, 0, 1, 0, 2, 1, 4, 0, 1, 0, 0, 2
Offset: 1

Views

Author

Asher Auel, Jan 17 2000

Keywords

Comments

Chowla's function (A048050) = sum of divisors of n except 1 and n.

Crossrefs

Programs

  • Maple
    with(numtheory): [seq((sigma(i)-i-1) mod (tau(i)-1),i=2..120);#i>1
  • PARI
    A054015(n) = if(1==n,0,((sigma(n)-n-1) % (numdiv(n)-1))); \\ Antti Karttunen, Oct 20 2017

Formula

a(1) = 0; for n > 1, a(n) = A048050(n) mod A032741(n).

Extensions

Description clarified by Antti Karttunen, Oct 20 2017

A054017 Chowla's function of n modulo n is a square (excluding 0's).

Original entry on oeis.org

14, 20, 39, 40, 46, 55, 80, 94, 100, 104, 117, 130, 155, 158, 183, 190, 200, 203, 291, 292, 295, 299, 320, 323, 334, 416, 430, 446, 464, 475, 488, 530, 539, 549, 567, 579, 583, 638, 650, 695, 718, 799, 873, 878, 890, 943, 955, 959, 964, 979, 1030, 1118
Offset: 1

Views

Author

Asher Auel, Jan 19 2000

Keywords

Comments

Chowla's function (A048050) = sum of divisors of n except 1 and n.

Crossrefs

Programs

  • Mathematica
    aQ[n_] := (c = DivisorSigma[1, n] - n - 1) > 0 && IntegerQ @ Sqrt @ Mod[c, n]; Select[Range[1000], aQ] (* Amiram Eldar, Aug 28 2019 *)

A054018 Squares mentioned in A054017.

Original entry on oeis.org

9, 1, 16, 9, 25, 16, 25, 49, 16, 1, 64, 121, 36, 81, 64, 169, 64, 36, 100, 225, 64, 36, 121, 36, 169, 49, 361, 225, 1, 144, 441, 441, 144, 256, 400, 196, 64, 441, 1, 144, 361, 64, 400, 441, 729, 64, 196, 144, 729, 100, 841, 729, 25, 400, 256, 1225, 100, 729, 1225
Offset: 1

Views

Author

Asher Auel, Jan 19 2000

Keywords

Comments

If Chowla's function of n read (modulo n) is a nonzero square, print this square.
Chowla's function (A048050) = sum of divisors of n except 1 and n.

Crossrefs

Programs

  • Mathematica
    chowla[n_] := DivisorSigma[1, n] - n - 1; aQ[n_] := (c = chowla[n]) > 0 && IntegerQ @ Sqrt @ Mod[c, n]; Mod[chowla[#], #] & /@ Select[Range[1000], aQ] (* Amiram Eldar, Aug 28 2019 *)

A054019 Square roots of A054018.

Original entry on oeis.org

3, 1, 4, 3, 5, 4, 5, 7, 4, 1, 8, 11, 6, 9, 8, 13, 8, 6, 10, 15, 8, 6, 11, 6, 13, 7, 19, 15, 1, 12, 21, 21, 12, 16, 20, 14, 8, 21, 1, 12, 19, 8, 20, 21, 27, 8, 14, 12, 27, 10, 29, 27, 5, 20, 16, 35, 10, 27, 35, 31, 30, 29, 3, 12, 28, 5, 1, 35, 26, 10, 20, 37, 12, 33, 18, 43, 43, 45, 22
Offset: 1

Views

Author

Asher Auel, Jan 19 2000

Keywords

Crossrefs

Programs

  • Mathematica
    chowla[n_] := DivisorSigma[1, n] - n - 1; aQ[n_] := (c = chowla[n]) > 0 && IntegerQ@Sqrt@Mod[c, n]; Sqrt @ Mod[chowla[#], #] & /@ Select[Range[1000], aQ] (* Amiram Eldar, Aug 28 2019 *)
Showing 1-6 of 6 results.