cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A303694 Array read by antidiagonals: T(n,k) is the number of noncrossing partitions up to rotation composed of n blocks of size k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 3, 7, 6, 1, 1, 1, 1, 3, 11, 19, 14, 1, 1, 1, 1, 4, 17, 52, 86, 34, 1, 1, 1, 1, 4, 25, 102, 307, 372, 95, 1, 1, 1, 1, 5, 33, 187, 811, 1936, 1825, 280, 1, 1, 1, 1, 5, 43, 300, 1772, 6626, 13207, 9143, 854, 1
Offset: 0

Views

Author

Andrew Howroyd, Apr 28 2018

Keywords

Comments

Also, the number of unlabeled planar k-gonal cacti having n polygons.
The number of noncrossing partitions counted distinctly is given by A070914(n,k-1).

Examples

			Array begins:
==================================================================
n\k| 1   2    3     4      5       6       7        8        9
---+--------------------------------------------------------------
0  | 1   1    1     1      1       1       1        1        1 ...
1  | 1   1    1     1      1       1       1        1        1 ...
2  | 1   1    1     1      1       1       1        1        1 ...
3  | 1   2    2     3      3       4       4        5        5 ...
4  | 1   3    7    11     17      25      33       43       55 ...
5  | 1   6   19    52    102     187     300      463      663 ...
6  | 1  14   86   307    811    1772    3412     5993     9821 ...
7  | 1  34  372  1936   6626   17880   40770    82887   154079 ...
8  | 1  95 1825 13207  58385  191967  518043  1213879  2558305 ...
9  | 1 280 9143 93496 532251 2141232 6830545 18471584 44121134 ...
...
		

Crossrefs

Programs

  • Mathematica
    T[0, _] = 1;
    T[n_, k_] := (DivisorSum[n, EulerPhi[n/#] Binomial[k #, #]&] + DivisorSum[ GCD[n-1, k], EulerPhi[#] Binomial[n k/#, (n-1)/#]&])/(k n) - Binomial[k n, n]/(n (k-1) + 1);
    Table[T[n-k, k], {n, 0, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, May 22 2018 *)
  • PARI
    T(n,k)={if(n==0, 1, (sumdiv(n,d,eulerphi(n/d)*binomial(k*d,d)) + sumdiv(gcd(n-1,k), d, eulerphi(d)*binomial(n*k/d, (n-1)/d)))/(k*n) - binomial(k*n,n)/(n*(k-1)+1))}

Formula

T(n,k) = ((Sum_{d|n} phi(n/d)*binomial(k*d,d)) + (Sum_{d|gcd(n-1,k)} phi(d) * binomial(n*k/d, (n-1)/d)))/(k*n) - binomial(k*n,n)/(n*(k-1)+1) for n > 0.
T(n,k) ~ A070914(n,k-1)/(n*k) for fixed k > 1.

A054363 Number of unlabeled 5-ary cacti having n polygons.

Original entry on oeis.org

1, 1, 5, 15, 85, 510, 4051, 33130, 291925, 2661255, 25059670, 241724380, 2379912355, 23833198140, 242173108050, 2491817151160, 25921371278805, 272256630756265, 2884054952424115, 30784716141936525, 330853932861650870, 3577823885433087690, 38907658120970944700
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=5 of A303912.

Programs

  • Mathematica
    a[n_] := If[n == 0, 1, (Binomial[5*n, n]/(4*n + 1) + DivisorSum[n, Binomial[5*#, #]*EulerPhi[n/#]*Boole[# < n] & ])/n]; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Jul 17 2017 *)
  • PARI
    a(n) = if(n==0, 1, sumdiv(n, d, eulerphi(n/d)*binomial(5*d, d))/n - 4*binomial(5*n, n)/(4*n+1)) \\ Andrew Howroyd, May 02 2018

Formula

a(n) = (1/n)*(Sum_{d|n} phi(n/d)*binomial(5*d, d)) - 4*binomial(5*n, n)/(4*n+1) for n > 0. - Andrew Howroyd, May 02 2018
a(n) ~ 5^(5*n + 1/2) / (sqrt(Pi) * n^(5/2) * 2^(8*n + 7/2)). - Vaclav Kotesovec, Jul 17 2017

Extensions

More terms from Jean-François Alcover, Jul 17 2017

A054364 Number of unlabeled asymmetric 5-ary cacti having n polygons.

Original entry on oeis.org

1, 1, 0, 10, 60, 505, 3876, 33125, 290700, 2661100, 25049020, 241724375, 2379812100, 23833198135, 242172147380, 2491817140380, 25921361665100, 272256630756260, 2884054853862540, 30784716141936520, 330853931834416520, 3577823885432126890, 38907658110093347780
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=5 of A303913.

Programs

  • Mathematica
    a[0] = 1;
    a[n_] := DivisorSum[n, MoebiusMu[n/#] Binomial[5#, #]&]/n - 4 Binomial[5n, n]/(4n+1);
    Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Jul 01 2018, after Andrew Howroyd *)
  • PARI
    a(n) = if(n==0, 1, sumdiv(n, d, moebius(n/d)*binomial(5*d, d))/n - 4*binomial(5*n, n)/(4*n+1)) \\ Andrew Howroyd, May 02 2018

Formula

a(n) = (1/n)*(Sum_{d|n} mu(n/d)*binomial(5*d, d)) - 4*binomial(5*n, n)/(4*n+1) for n > 0. - Andrew Howroyd, May 02 2018

Extensions

Terms a(13) and beyond from Andrew Howroyd, May 02 2018

A303871 Number of noncrossing partitions up to rotation and reflection composed of n blocks of size 5.

Original entry on oeis.org

1, 1, 1, 3, 11, 60, 423, 3381, 29335, 266703, 2507232, 24177705, 238003111, 2383370158, 24217426745, 249182213284, 2592138293117, 27225668134063, 288405507217589, 3078471666603235, 33085393411436772, 357782389095170193, 3890765813426578535, 42527471172438573757
Offset: 0

Views

Author

Andrew Howroyd, May 01 2018

Keywords

Crossrefs

Column k=5 of A303929.
Cf. A054365.

Programs

  • Mathematica
    u[n_, k_, r_] := (r*Binomial[k*n + r, n]/(k*n + r));
    e[n_, k_] := Sum[ u[j, k, 1 + (n - 2*j)*k/2], {j, 0, n/2}]
    c[n_, k_] := If[n == 0, 1, (DivisorSum[n, EulerPhi[n/#]*Binomial[k*#, #] &] + DivisorSum[GCD[n - 1, k], EulerPhi[#]*Binomial[n*k/#, (n - 1)/#] &])/(k*n) - Binomial[k*n, n]/(n*(k - 1) + 1)];
    T[n_, k_] := (1/2)*(c[n, k] + If[n == 0, 1, If[OddQ[k], If[OddQ[n], 2*u[Quotient[n, 2], k, (k + 1)/2], u[n/2, k, 1] + u[n/2 - 1, k, k]], e[n, k] + If[OddQ[n], u[Quotient[n, 2], k, k/2]]]/2]) /. Null -> 0;
    a[n_] := T[n, 5];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 14 2018, after Andrew Howroyd and A303929 *)

Formula

a(n) ~ 5^(5*n - 1/2) / (sqrt(Pi) * n^(5/2) * 2^(8*n + 9/2)). - Vaclav Kotesovec, Jun 01 2022
Showing 1-4 of 4 results.