cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054451 Third column of triangle A054450 (partial row sums of unsigned Chebyshev triangle A049310).

Original entry on oeis.org

1, 1, 4, 5, 12, 17, 33, 50, 88, 138, 232, 370, 609, 979, 1596, 2575, 4180, 6755, 10945, 17700, 28656, 46356, 75024, 121380, 196417, 317797, 514228, 832025, 1346268, 2178293, 3524577, 5702870, 9227464, 14930334, 24157816, 39088150, 63245985, 102334135
Offset: 0

Views

Author

Wolfdieter Lang, Apr 27 2000

Keywords

Comments

Equals triangle A173284 * [1, 2, 3, ...]. - Gary W. Adamson, Mar 03 2010

Crossrefs

Programs

  • Maple
    BB:=1/(1-k^2)^2/(1-k-k^2): seq(coeff(series(BB, k, n+1), k, n), n=0..50); # Zerinvary Lajos, May 16 2007
  • Mathematica
    LinearRecurrence[{1,3,-2,-3,1,1},{1,1,4,5,12,17},40] (* Harvey P. Dale, Oct 06 2024 *)
  • PARI
    Vec(-1/((x-1)^2*(x+1)^2*(x^2+x-1)) + O(x^100)) \\ Colin Barker, Jun 14 2015

Formula

a(n) = A054450(n+2, 2).
G.f.: Fib(x)/(1-x^2)^2, with Fib(x)=1/(1-x-x^2) = g.f. A000045 (Fibonacci numbers without 0).
a(2*k) = A027941(k)= F(2*k+3)-1; a(2*k+1)= F(2*(k+2))-(k+2)= A054452(k), k >= 0.
a(n-2) = Fibonacci(n+1) - binomial(n-floor(n/2), floor(n/2)), or a(n-2) = Sum_{i=0..floor(n/2)-1} binomial(n-i, i). - Jon Perry, Mar 18 2004
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+2, k). - Paul Barry, Oct 23 2004

Extensions

More terms from James Sellers, Apr 28 2000