cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054492 a(n) = 3*a(n-1) - a(n-2), a(0)=1, a(1)=6.

Original entry on oeis.org

1, 6, 17, 45, 118, 309, 809, 2118, 5545, 14517, 38006, 99501, 260497, 681990, 1785473, 4674429, 12237814, 32039013, 83879225, 219598662, 574916761, 1505151621, 3940538102, 10316462685, 27008849953, 70710087174, 185121411569, 484654147533, 1268841031030
Offset: 0

Views

Author

Barry E. Williams, May 06 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.

Crossrefs

Programs

  • Magma
    I:=[1,6]; [n le 2 select I[n] else 3*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 20 2015
  • Mathematica
    CoefficientList[Series[(1 + 3 x) / (1 - 3 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 20 2015 *)
    LinearRecurrence[{3, -1}, {1, 6}, 100] (* G. C. Greubel, Mar 26 2016 *)
  • PARI
    Vec((1+3*x)/(1-3*x+x^2) + O(x^30)) \\ Michel Marcus, Mar 20 2015
    

Formula

a(n) = (6*(((3+sqrt(5))/2)^n - ((3-sqrt(5))/2)^n) - (((3+sqrt(5))/2)^(n-1) - ((3-sqrt(5))/2)^(n-1)))/sqrt(5).
a(n) = 2*Lucas(2*n+1) - Fibonacci(2*n+1).
G.f.: (1+3*x)/(1-3*x+x^2). - Philippe Deléham, Nov 03 2008
a(n) = 5*Fibonacci(2*n) + Fibonacci(2*n-1). - Ehren Metcalfe, Mar 26 2016
E.g.f.: (1/10) * exp((3-sqrt(5))*x/2) * ((5-9*sqrt(5)) + (5+9*sqrt(5)) * exp(sqrt(5)*x) ). - G. C. Greubel, Mar 26 2016

Extensions

More terms from Vincenzo Librandi, Mar 20 2015
Typo in name fixed by Karl V. Keller, Jr., Jun 23 2015