cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A055267 a(n) = 3*a(n-1) - a(n-2) with a(0)=1, a(1)=7.

Original entry on oeis.org

1, 7, 20, 53, 139, 364, 953, 2495, 6532, 17101, 44771, 117212, 306865, 803383, 2103284, 5506469, 14416123, 37741900, 98809577, 258686831, 677250916, 1773065917, 4641946835, 12152774588, 31816376929, 83296356199, 218072691668, 570921718805, 1494692464747
Offset: 0

Views

Author

Barry E. Williams, May 09 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.

Crossrefs

Programs

  • GAP
    List([0..30], n-> Fibonacci(2*n+2) +4*Fibonacci(2*n) ); # G. C. Greubel, Jan 17 2020
  • Magma
    [5*Fibonacci(2*n) + Fibonacci(2*n+1): n in [0..30]]; // Vincenzo Librandi, Dec 25 2018
    
  • Maple
    with(combinat); seq(fibonacci(2*n+2) +4*fibonacci(2*n), n=0..30); # G. C. Greubel, Jan 17 2020
  • Mathematica
    Table[5*Fibonacci[2n] + Fibonacci[2n+1],  {n, 0, 30}]
    Table[4*Fibonacci[2n-1] + 3*LucasL[2n-1], {n, 0, 30}] (* Rigoberto Florez, Dec 24 2018 *)
    LinearRecurrence[{3,-1}, {1,7}, 30] (* Vincenzo Librandi, Dec 25 2018 *)
    nxt[{a_,b_}]:={b,3b-a}; NestList[nxt,{1,7},30][[;;,1]] (* Harvey P. Dale, Mar 23 2025 *)
  • PARI
    Vec((1+4*x)/(1-3*x+x^2) + O(x^40)) \\ Michel Marcus, Sep 06 2017
    
  • Sage
    [fibonacci(2*n+2) +4*fibonacci(2*n) for n in (0..30)] # G. C. Greubel, Jan 17 2020
    

Formula

a(n) = (7*(((3 + sqrt(5))/2)^n - ((3 - sqrt(5))/2)^n) - (((3 + sqrt(5))/2)^(n - 1) - ((3 - sqrt(5))/2)^(n - 1)))/sqrt(5).
G.f.: (1 + 4*x)/(1 - 3*x + x^2).
From Rigoberto Florez, Dec 24 2018: (Start)
a(n) = 5*Fibonacci(2*n) + Fibonacci(2*n+1).
a(n) = 4*Fibonacci(2*n - 1) + 3*Lucas(2*n - 1). (End)
E.g.f.: exp(3*t/2)*( cosh(sqrt(5)*t/2) + (11/sqrt(5))*sinh(sqrt(5)*t/2) ). - G. C. Greubel, Jan 17 2020
a(n) = 4*A001906(n) + A001906(n+1). - R. J. Mathar, Mar 06 2022

A141751 Triangle, read by rows, where T(n,k) = [T(n-1,k-1)*T(n-1,k) + 1]/T(n-2,k-1) for 0=0 and T(n,0) = Fibonacci(2*n-1) for n>=1.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 13, 13, 8, 4, 1, 34, 34, 21, 11, 5, 1, 89, 89, 55, 29, 14, 6, 1, 233, 233, 144, 76, 37, 17, 7, 1, 610, 610, 377, 199, 97, 45, 20, 8, 1, 1597, 1597, 987, 521, 254, 118, 53, 23, 9, 1, 4181, 4181, 2584, 1364, 665, 309, 139, 61, 26, 10, 1
Offset: 0

Views

Author

Paul D. Hanna, Jul 04 2008

Keywords

Examples

			Generating rule.
Given nonzero elements W, X, Y, Z, relatively arranged like so:
.. W .....
.. X Y ...
.... Z ...
then Z = (X*Y + 1)/W.
Triangle begins:
1;
1, 1;
2, 2, 1;
5, 5, 3, 1;
13, 13, 8, 4, 1;
34, 34, 21, 11, 5, 1;
89, 89, 55, 29, 14, 6, 1;
233, 233, 144, 76, 37, 17, 7, 1;
610, 610, 377, 199, 97, 45, 20, 8, 1;
1597, 1597, 987, 521, 254, 118, 53, 23, 9, 1;
4181, 4181, 2584, 1364, 665, 309, 139, 61, 26, 10, 1; ...
		

Crossrefs

Programs

  • PARI
    T(n,k)=if(n
    				
  • PARI
    T(n,k)=fibonacci(2*(n-k))*k+fibonacci(2*(n-k)-1)
    for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))

Formula

T(n,k) = Fibonacci(2*(n-k)-1) + k*Fibonacci(2*(n-k)) for 0<=k<=n.

A192916 Constant term in the reduction by (x^2 -> x+1) of the polynomial C(n)*x^n, where C=A022095.

Original entry on oeis.org

1, 0, 6, 11, 34, 84, 225, 584, 1534, 4011, 10506, 27500, 72001, 188496, 493494, 1291979, 3382450, 8855364, 23183649, 60695576, 158903086, 416013675, 1089137946, 2851400156, 7465062529, 19543787424, 51166299750, 133955111819, 350699035714, 918141995316
Offset: 0

Views

Author

Clark Kimberling, Jul 12 2011

Keywords

Comments

See A192872.

Crossrefs

Programs

  • GAP
    F:=Fibonacci;; List([0..30], n-> F(2*n) +2*F(n)*F(n-1) +(-1)^n); # G. C. Greubel, Jul 28 2019
  • Magma
    F:=Fibonacci; [F(2*n) +2*F(n)*F(n-1) +(-1)^n: n in [0..30]]; // G. C. Greubel, Jul 28 2019
    
  • Mathematica
    (* First program *)
    q = x^2; s = x + 1; z = 28;
    p[0, x_]:= 1; p[1, x_]:= 5 x;
    p[n_, x_]:= p[n-1, x]*x + p[n-2, x]*x^2;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192914 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* see A192878 *)
    (* Second program *)
    With[{F=Fibonacci}, Table[F[2*n] +2*F[n]*F[n-1] +(-1)^n, {n,0,30}]] (* G. C. Greubel, Jul 28 2019 *)
  • PARI
    a(n) = round((2^(-n)*(7*(-2)^n+(3+sqrt(5))^n*(-1+2*sqrt(5))-(3-sqrt(5))^n*(1+2*sqrt(5))))/5) \\ Colin Barker, Oct 01 2016
    
  • PARI
    Vec((1+4*x^2-2*x)/((1+x)*(1-3*x+x^2)) + O(x^30)) \\ Colin Barker, Oct 01 2016
    
  • PARI
    vector(30, n, n--; f=fibonacci; f(2*n) +2*f(n)*f(n-1) +(-1)^n) \\ G. C. Greubel, Jul 28 2019
    
  • Sage
    f=fibonacci; [f(2*n) +2*f(n)*f(n-1) +(-1)^n for n in (0..30)] # G. C. Greubel, Jul 28 2019
    

Formula

a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
G.f.: (1 -2*x +4*x^2)/((1+x)*(1-3*x+x^2)). - R. J. Mathar, May 08 2014
a(n) + a(n+1) = A054492(n). - R. J. Mathar, May 07 2014
a(n) = (2^(-n)*(7*(-2)^n+(3+sqrt(5))^n*(-1+2*sqrt(5))-(3-sqrt(5))^n*(1+2*sqrt(5))))/5. - Colin Barker, Oct 01 2016
a(n) = Fibonacci(2*n) + 2*Fibonacci(n)*Fibonacci(n-1) + (-1)^n. - G. C. Greubel, Jul 28 2019
Showing 1-3 of 3 results.