cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A055273 a(n) = 3*a(n-1) - a(n-2) with a(0) = 1, a(1) = 8.

Original entry on oeis.org

1, 8, 23, 61, 160, 419, 1097, 2872, 7519, 19685, 51536, 134923, 353233, 924776, 2421095, 6338509, 16594432, 43444787, 113739929, 297775000, 779585071, 2040980213, 5343355568, 13989086491, 36623903905, 95882625224, 251023971767, 657189290077, 1720543898464
Offset: 0

Views

Author

Barry E. Williams, May 28 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Programs

  • GAP
    a:=[1,8];; for n in [3..30] do a[n]:=3*a[n-1]-a[n-2]; od; Print(a); # Muniru A Asiru, Dec 29 2018
    
  • Magma
    [Fibonacci(2*n+2) + 5*Fibonacci(2*n): n in [0..30]]; // Vincenzo Librandi, Dec 25 2018
    
  • Maple
    seq(coeff(series((1+5*x)/(1-3*x+x^2),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Dec 29 2018
  • Mathematica
    Table[3Fibonacci[2n+2]-Fibonacci[2n-3], {n,0,20}] (* Rigoberto Florez, Dec 24 2018 *)
    LinearRecurrence[{3, -1}, {1, 8}, 30] (* Vincenzo Librandi, Dec 25 2018 *)
  • PARI
    vector(30, n, fibonacci(2*n) + 5*fibonacci(2*n-2) ) \\ G. C. Greubel, Jan 17 2020
    
  • Sage
    [fibonacci(2*n+2) +5*fibonacci(2*n) for n in (0..30)] # G. C. Greubel, Jan 17 2020

Formula

a(n) = (8*(((3 + sqrt(5))/2)^n - ((3 - sqrt(5))/2)^n) - (((3 + sqrt(5))/2)^(n - 1) - ((3 - sqrt(5))/2)^(n - 1)))/sqrt(5).
G.f.: (1 + 5*x)/(1 - 3*x + x^2).
From Rigoberto Florez, Dec 24 2018: (Start)
a(n) = Fibonacci(2n+2) + 5*Fibonacci(2n),
a(n) = 3*Fibonacci(2n+2) - Fibonacci(2n-3). (End)
E.g.f.: (1/5)*exp(3*x/2)*(5*cosh(sqrt(5)*x/2) + 13*sqrt(5)*sinh(sqrt(5)*x/2)). - Franck Maminirina Ramaharo, Dec 26 2018
a(n) = ChebyshevT(n, 3/2) + (13/2)*ChebyshevU(n-1, 3/2) = ChebyshevU(n, 3/2) + 5*ChebyshevU(n-1, 3/2). - G. C. Greubel, Jan 17 2020

A141751 Triangle, read by rows, where T(n,k) = [T(n-1,k-1)*T(n-1,k) + 1]/T(n-2,k-1) for 0=0 and T(n,0) = Fibonacci(2*n-1) for n>=1.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 13, 13, 8, 4, 1, 34, 34, 21, 11, 5, 1, 89, 89, 55, 29, 14, 6, 1, 233, 233, 144, 76, 37, 17, 7, 1, 610, 610, 377, 199, 97, 45, 20, 8, 1, 1597, 1597, 987, 521, 254, 118, 53, 23, 9, 1, 4181, 4181, 2584, 1364, 665, 309, 139, 61, 26, 10, 1
Offset: 0

Views

Author

Paul D. Hanna, Jul 04 2008

Keywords

Examples

			Generating rule.
Given nonzero elements W, X, Y, Z, relatively arranged like so:
.. W .....
.. X Y ...
.... Z ...
then Z = (X*Y + 1)/W.
Triangle begins:
1;
1, 1;
2, 2, 1;
5, 5, 3, 1;
13, 13, 8, 4, 1;
34, 34, 21, 11, 5, 1;
89, 89, 55, 29, 14, 6, 1;
233, 233, 144, 76, 37, 17, 7, 1;
610, 610, 377, 199, 97, 45, 20, 8, 1;
1597, 1597, 987, 521, 254, 118, 53, 23, 9, 1;
4181, 4181, 2584, 1364, 665, 309, 139, 61, 26, 10, 1; ...
		

Crossrefs

Programs

  • PARI
    T(n,k)=if(n
    				
  • PARI
    T(n,k)=fibonacci(2*(n-k))*k+fibonacci(2*(n-k)-1)
    for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))

Formula

T(n,k) = Fibonacci(2*(n-k)-1) + k*Fibonacci(2*(n-k)) for 0<=k<=n.

A335807 Number of vertices in the n-th simplex graph of the complete graph on three vertices (K_3).

Original entry on oeis.org

3, 8, 21, 54, 140, 365, 954, 2496, 6533, 17102, 44772, 117213, 306866, 803384, 2103285, 5506470, 14416124, 37741901, 98809578, 258686832, 677250917, 1773065918, 4641946836, 12152774589, 31816376930, 83296356200, 218072691669, 570921718806, 1494692464748, 3913155675437
Offset: 0

Views

Author

James Turbett, Aug 14 2020

Keywords

Comments

The simplex k(G) of an undirected graph G is itself a graph that has one vertex for each clique in G. Two vertices are connected by an edge in k(G) if their corresponding cliques differ by the presence or absence of a single vertex in G. For the purposes of finding a simplex graph, the empty set of zero vertices is considered a 0-clique in G, and each individual vertex in G is considered a 1-clique in G.
If we define the simplex graph of a graph G to be k(G), then we can define the 2nd simplex graph to be k(k(G)), which is the simplex of the simplex of the graph G, and the 3rd simplex graph to be k(k(k(G))), and so on. We can also define the 0th simplex graph to be the graph itself.
Using recurrence relations and the initial values for order and size of the 1st simplex graph of a graph G, it is possible to calculate the orders (and sizes) of the n-th simplex graphs using an algorithm, which I provided as a JavaScript program.
The order, |V|(n), of the n-th simplex graph of a graph G follows this recurrence relation: |V|(n) = |V|(n - 1) + |E|(n - 1) + 1, where |E|(n - 1) is the size of the (n-1)-th simplex graph of G and |V|(n-1) is the order of the (n-1)-th simplex graph of G.
The size, |E|(n), of the n-th simplex graph of a graph G follows this recurrence relation: |E|(n) = |V|(n - 1) + 2*|E|(n - 1), where |V|(n-1) is the order of the (n-1)-th simplex graph of G and |E|(n-1) is the size of the (n-1)-th simplex graph of G.

Examples

			The simplex graph of K_3 will have 8 vertices: 1 for the 0-clique in K_3, 3 for the 1-cliques in K_3, 3 for the 2-cliques in K_3, and 1 for the 3-clique in K_3.
It also has size 12. In the simplex graph, each vertex corresponding to a 1-clique in K_3 links to the simplex graph vertex corresponding to a 0-clique in K_3, creating 3 edges. Also, each simplex graph vertex corresponding to a 2-clique in K_3 links to 2 simplex graph vertices corresponding to a 1-clique in K_3, producing 6 more edges. Finally, the single vertex in the simplex graph corresponding to the 3-clique in K_3 links to each simplex graph vertex corresponding to a 2-clique in K_3, producing 3 more edges, for a total of 12 edges in the 1st simplex graph of K_3.
Using the recurrence relation, we can calculate |V|(2) = |V|(1) + |E|(1) + 1 = 8 + 12 + 1 = 21. Therefore, the 2nd simplex graph of K_3 will have 21 vertices.
		

Programs

  • JavaScript
    //Define order and size of 1st simplex graph of K_3
    var order = [8]
    var size = [12]//Calculate the orders of the 1st through (numberOfTerms + 1)th simplex graphs of K_3
    function simplexSequenceOrder (numberOfTerms) {
    for (var i = 1; i <= numberOfTerms; i++) {
    order[i] = order[i-1] + size[i-1] + 1;
    size [i] = order[i-1] + 2*size[i-1];
    }
    return order.join();
    }
    
  • PARI
    Vec((3 - 4*x + x^2 - x^3) / ((1 - x)*(1 - 3*x + x^2)) + O(x^28)) \\ Colin Barker, Aug 16 2020

Formula

From Colin Barker, Aug 15 2020: (Start)
G.f.: (3 - 4*x + x^2 - x^3) / ((1 - x)*(1 - 3*x + x^2)).
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3) for n>3.
(End)
a(n) = (10 + (5 - 11*sqrt(5))*(1/2*(3 - sqrt(5)))^n + (1/2*(3 + sqrt(5)))^n*(5 + 11*sqrt(5)))/10 for n > 0. - Stefano Spezia, Aug 15 2020
a(n) = 3*a(n-1) - a(n-2) - 1 for n >= 3. - James Turbett, Aug 18 2020
a(n) = 1+A055267(n), n>0. - R. J. Mathar, Mar 06 2022
Showing 1-3 of 3 results.