A055273
a(n) = 3*a(n-1) - a(n-2) with a(0) = 1, a(1) = 8.
Original entry on oeis.org
1, 8, 23, 61, 160, 419, 1097, 2872, 7519, 19685, 51536, 134923, 353233, 924776, 2421095, 6338509, 16594432, 43444787, 113739929, 297775000, 779585071, 2040980213, 5343355568, 13989086491, 36623903905, 95882625224, 251023971767, 657189290077, 1720543898464
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
-
a:=[1,8];; for n in [3..30] do a[n]:=3*a[n-1]-a[n-2]; od; Print(a); # Muniru A Asiru, Dec 29 2018
-
[Fibonacci(2*n+2) + 5*Fibonacci(2*n): n in [0..30]]; // Vincenzo Librandi, Dec 25 2018
-
seq(coeff(series((1+5*x)/(1-3*x+x^2),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Dec 29 2018
-
Table[3Fibonacci[2n+2]-Fibonacci[2n-3], {n,0,20}] (* Rigoberto Florez, Dec 24 2018 *)
LinearRecurrence[{3, -1}, {1, 8}, 30] (* Vincenzo Librandi, Dec 25 2018 *)
-
vector(30, n, fibonacci(2*n) + 5*fibonacci(2*n-2) ) \\ G. C. Greubel, Jan 17 2020
-
[fibonacci(2*n+2) +5*fibonacci(2*n) for n in (0..30)] # G. C. Greubel, Jan 17 2020
A141751
Triangle, read by rows, where T(n,k) = [T(n-1,k-1)*T(n-1,k) + 1]/T(n-2,k-1) for 0=0 and T(n,0) = Fibonacci(2*n-1) for n>=1.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 13, 13, 8, 4, 1, 34, 34, 21, 11, 5, 1, 89, 89, 55, 29, 14, 6, 1, 233, 233, 144, 76, 37, 17, 7, 1, 610, 610, 377, 199, 97, 45, 20, 8, 1, 1597, 1597, 987, 521, 254, 118, 53, 23, 9, 1, 4181, 4181, 2584, 1364, 665, 309, 139, 61, 26, 10, 1
Offset: 0
Generating rule.
Given nonzero elements W, X, Y, Z, relatively arranged like so:
.. W .....
.. X Y ...
.... Z ...
then Z = (X*Y + 1)/W.
Triangle begins:
1;
1, 1;
2, 2, 1;
5, 5, 3, 1;
13, 13, 8, 4, 1;
34, 34, 21, 11, 5, 1;
89, 89, 55, 29, 14, 6, 1;
233, 233, 144, 76, 37, 17, 7, 1;
610, 610, 377, 199, 97, 45, 20, 8, 1;
1597, 1597, 987, 521, 254, 118, 53, 23, 9, 1;
4181, 4181, 2584, 1364, 665, 309, 139, 61, 26, 10, 1; ...
-
T(n,k)=if(n
-
T(n,k)=fibonacci(2*(n-k))*k+fibonacci(2*(n-k)-1)
for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))
A335807
Number of vertices in the n-th simplex graph of the complete graph on three vertices (K_3).
Original entry on oeis.org
3, 8, 21, 54, 140, 365, 954, 2496, 6533, 17102, 44772, 117213, 306866, 803384, 2103285, 5506470, 14416124, 37741901, 98809578, 258686832, 677250917, 1773065918, 4641946836, 12152774589, 31816376930, 83296356200, 218072691669, 570921718806, 1494692464748, 3913155675437
Offset: 0
The simplex graph of K_3 will have 8 vertices: 1 for the 0-clique in K_3, 3 for the 1-cliques in K_3, 3 for the 2-cliques in K_3, and 1 for the 3-clique in K_3.
It also has size 12. In the simplex graph, each vertex corresponding to a 1-clique in K_3 links to the simplex graph vertex corresponding to a 0-clique in K_3, creating 3 edges. Also, each simplex graph vertex corresponding to a 2-clique in K_3 links to 2 simplex graph vertices corresponding to a 1-clique in K_3, producing 6 more edges. Finally, the single vertex in the simplex graph corresponding to the 3-clique in K_3 links to each simplex graph vertex corresponding to a 2-clique in K_3, producing 3 more edges, for a total of 12 edges in the 1st simplex graph of K_3.
Using the recurrence relation, we can calculate |V|(2) = |V|(1) + |E|(1) + 1 = 8 + 12 + 1 = 21. Therefore, the 2nd simplex graph of K_3 will have 21 vertices.
-
//Define order and size of 1st simplex graph of K_3
var order = [8]
var size = [12]//Calculate the orders of the 1st through (numberOfTerms + 1)th simplex graphs of K_3
function simplexSequenceOrder (numberOfTerms) {
for (var i = 1; i <= numberOfTerms; i++) {
order[i] = order[i-1] + size[i-1] + 1;
size [i] = order[i-1] + 2*size[i-1];
}
return order.join();
}
-
Vec((3 - 4*x + x^2 - x^3) / ((1 - x)*(1 - 3*x + x^2)) + O(x^28)) \\ Colin Barker, Aug 16 2020
Showing 1-3 of 3 results.
Comments