cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054493 A Pellian-related recursive sequence.

Original entry on oeis.org

1, 7, 36, 175, 841, 4032, 19321, 92575, 443556, 2125207, 10182481, 48787200, 233753521, 1119980407, 5366148516, 25710762175, 123187662361, 590227549632, 2827950085801, 13549522879375, 64919664311076, 311048798676007, 1490324329068961, 7140572846668800
Offset: 0

Views

Author

Barry E. Williams, May 06 2000

Keywords

Comments

This is the r=7 member in the r-family of sequences S_r(n+1) defined in A092184 where more information can be found.
Working with an offset of 1, this sequence is a divisibility sequence, i.e., a(n) divides a(m) whenever n divides m. Case P1 = 7, P2 = 10, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 25 2014

Examples

			G.f. = 1 + 7*x + 36*x^2 + 175*x^3 + 841*x^4 + 4032*x^5 + 19321*x^6 + ...
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.

Crossrefs

Cf. A004254, A100047, A030221 (first differences).

Programs

  • Maple
    A054493 := proc(n)
        option remember;
        if n <= 1 then
            6*n+1 ;
        else
            5*procname(n-1)-procname(n-2)+2 ;
        end if ;
    end proc:
    seq(A054493(n),n=0..10) ; # R. J. Mathar, Apr 16 2018
  • Mathematica
    LinearRecurrence[{6,-6,1},{1,7,36},30] (* Harvey P. Dale, Apr 15 2015 *)
    a[ n_] := ChebyshevU[n, Sqrt[7]/2]^2; (* Michael Somos, Jan 22 2017 *)
  • PARI
    {a(n) = simplify(polchebyshev(n, 2, quadgen(28)/2)^2)}; /* Michael Somos, Jan 22 2017 */

Formula

a(n) = 5*a(n-1) - a(n-2) + 2, a(0)=1, a(1)=7.
A004254 = sqrt{21*(A054493)^2+28*(A054493)}/7. - James Sellers, May 10 2000
a(n) = (1/3)*(-2 + ((5+sqrt(21))/2)^n + ((5-sqrt(21))/2)^n). - Ralf Stephan, Apr 14 2004
G.f.: (1+x)/((1-x)*(1 - 5*x + x^2)) = (1+x)/(1 - 6*x + 6*x^2 - x^3). From the R. Stephan link.
a(n) = 6*a(n-1) - 6*a(n-2) + a(n-3), n>=2, a(-1):=0, a(0)=1, a(1)=7.
a(n) = (2*T(n, 5/2)-2)/3, with twice the Chebyshev polynomials of the first kind, 2*T(n, x=5/2)=A003501(n).
a(n) = b(n) + b(n-1), n>=1, with b(n)=A089817(n) the partial sums of S(n, 5)= U(n, 5/2)=A004254(n+1), with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind.
From Peter Bala, Mar 25 2014: (Start)
The following formulas assume an offset of 1.
Let {u(n)} be the Lucas sequence in the quadratic integer ring Z[sqrt(7)] defined by the recurrence u(0) = 0, u(1) = 1 and u(n) = sqrt(7)*u(n-1) - u(n-2) for n >= 2. Then a(n) = u(n)^2.
Equivalently, a(n) = U(n-1,sqrt(7)/2)^2, where U(n,x) denotes the Chebyshev polynomial of the second kind.
a(n) = 1/3*( ((sqrt(7) + sqrt(3))/2)^n - ((sqrt(7) - sqrt(3))/2)^n )^2.
a(n) = bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, -5/2; 1, 7/2] and T(n,x) denotes the Chebyshev polynomial of the first kind.
See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)
a(2*n - 1) = 7 * A004254(n)^2, a(2*n) = A030221(n)^2 for all n in Z. - Michael Somos, Jan 22 2017
a(n) = a(-2-n) for all n in Z. - Michael Somos, Jan 22 2017
0 = 1 + a(n)*(-2 + a(n) - 5*a(n+1)) + a(n+1)*(-2 + a(n+1)) for all n in Z. - Michael Somos, Jan 22 2017

Extensions

Chebyshev comments from Wolfdieter Lang, Sep 10 2004