cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054567 a(n) = 4*n^2 - 7*n + 4.

Original entry on oeis.org

1, 6, 19, 40, 69, 106, 151, 204, 265, 334, 411, 496, 589, 690, 799, 916, 1041, 1174, 1315, 1464, 1621, 1786, 1959, 2140, 2329, 2526, 2731, 2944, 3165, 3394, 3631, 3876, 4129, 4390, 4659, 4936, 5221, 5514, 5815, 6124, 6441, 6766, 7099, 7440, 7789, 8146, 8511, 8884
Offset: 1

Views

Author

Keywords

Comments

The number 1 is placed in the middle of a sheet of squared paper and the numbers 2, 3, 4, 5, 6, etc. are written in a clockwise spiral around 1, as in A068225 etc. This sequence is read off along one of the rays from 1.
Ulam's spiral (W spoke of A054552). - Robert G. Wilson v, Oct 31 2011
Also, numbers of the form m*(4*m+1)+1 for nonnegative m. - Bruno Berselli, Jan 06 2016
The sequence forms the 1x2 diagonal of the square maze arrangement in A081344. - Jarrod G. Sage, Jul 17 2024

Crossrefs

Cf. A266883: m*(4*m+1)+1 for m = 0,-1,1,-2,2,-3,3,...
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = 8*n+a(n-1)-11 for n>1, a(1)=1. - Vincenzo Librandi, Aug 07 2010
a(n) = A204674(n-1) / n. - Reinhard Zumkeller, Jan 18 2012
From Colin Barker, Oct 25 2014: (Start)
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3).
G.f.: -x*(4*x^2+3*x+1) / (x-1)^3. (End)
E.g.f.: exp(x)*(4 - 3*x + 4*x^2) - 4. - Stefano Spezia, Apr 24 2024
a(n) = A016742(n-1) + n. - Jarrod G. Sage, Jul 17 2024

Extensions

Edited by Frank Ellermann, Feb 24 2002
Typo fixed by Charles R Greathouse IV, Oct 28 2009