cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054589 Table related to labeled rooted trees, cycles and binary trees.

Original entry on oeis.org

1, 1, 1, 2, 4, 3, 6, 18, 25, 15, 24, 96, 190, 210, 105, 120, 600, 1526, 2380, 2205, 945, 720, 4320, 13356, 26488, 34650, 27720, 10395, 5040, 35280, 128052, 305620, 507430, 575190, 405405, 135135
Offset: 1

Views

Author

F. Chapoton, Apr 14 2000

Keywords

Comments

The left column is (n-1)!, the right column is (2n-3)!!, the total of each row is n^(n-1).
Constant terms of polynomials related to Ramanujan psi polynomials (see Zeng reference).
From Peter Bala, Sep 29 2011: (Start)
Differentiating n times the Lambert function W(x) = Sum_{n>=1} n^(n-1)*x^n/n! with respect to x yields (d/dx)^n W(x) = exp(n*W(x))/(1-W(x))^n*R(n,1/(1-W(x))), where R(n,x) is the n-th row polynomial of this triangle. The first few values are R(1,x) = 1, R(2,x) = 1+x, R(3,x) = 2+4*x+3*x^2. The Ramanujan polynomials R(n,x) are strongly x-log-convex [Chen et al.].
Shor and Dumont-Ramamonjisoa have proved independently that the coefficient of x^k in R(n,x) counts rooted labeled trees on n vertices with k improper edges. Drake, Example 1.7.3, gives another combinatorial interpretation for this triangle as counting a family of labeled trees.
(End)

Examples

			Triangle begins:
  {1},
  {1,  1},
  {2,  4,  3},
  {6, 18, 25, 15},
  ...
		

Crossrefs

Programs

  • Mathematica
    p[1] = 1; p[n_] := p[n] = Expand[x^2*D[p[n-1], x] + (n-1)(1+x)p[n-1]]; Flatten[ Table[ CoefficientList[ p[n], x], {n, 1, 8}]] (* Jean-François Alcover, Jul 22 2011 *)
    Clear[a];
    a[1, 0] = 1;
    a[n_, k_] /; k < 0 || k >= n := 0
    a[n_, k_] /; 0 <= k <= n - 1 :=
    a[n, k] = (n - 1) a[n - 1, k] + (n + k - 2) a[n - 1, k - 1]
    Table[a[n, k], {n, 20}, {k, 0, n - 1}] (* David Callan, Oct 14 2012 *)

Formula

The polynomials p_n = Sum a[n, k]x^k satisfy p_1=1 and p_(n+1) = x*x*dp_n/dx+n*(1+x)*p_n.
From Peter Bala, Sep 29 2011: (Start)
E.g.f.: series reversion with respect to x of (1-t+(t-1+x*t)*exp(-x)) = x + (1+t)*x^2/2! + (2+4*t+3*t^2)*x^3/3! + ....
The sequence of shifted row polynomials {p_n(1+t)}n>=1 begins [1,2+t,9+10*t+3*t^2,...]. These are the row polynomials of A048160.
(End)
Let f(x) = exp(x)/(1-t*x). The e.g.f. A(x,t) = x + (1+t)*x^2/2! + (2+4*t+3*t^2)*x^3/3! + ... satisfies the autonomous differential equation dA/dx = f(A). The n-th row polynomial (n>=1) equals D^(n-1)(f(x)) evaluated at x = 0, where D is the operator f(x)*d/dx (apply [Dominici, Theorem 4.1]). - Peter Bala, Nov 09 2011
The polynomials (1+t)^(n-1)*p_n(1/(1+t)) are (up to sign) the row polynomials of A042977. - Peter Bala, Jul 23 2012
Let q_n = Sum_{k>=0} a(n,k)*t^(n-k), with q_0 = 1. (So q_1=t, q_2 = t+t^2, and q_3 = 3*t + 4*t^2 + 2*t^3.) Then Sum_{n>=0} q_n*x^n/n! = t - W((t-1-t^2*x)*exp(t-1)), where W is the Lambert function. - Ira M. Gessel, Jan 06 2012