cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054878 Number of closed walks of length n along the edges of a tetrahedron based at a vertex.

Original entry on oeis.org

1, 0, 3, 6, 21, 60, 183, 546, 1641, 4920, 14763, 44286, 132861, 398580, 1195743, 3587226, 10761681, 32285040, 96855123, 290565366, 871696101, 2615088300, 7845264903, 23535794706, 70607384121, 211822152360, 635466457083
Offset: 0

Views

Author

Paolo Dominici (pl.dm(AT)libero.it), May 23 2000

Keywords

Comments

Number of closed walks of length n at a vertex of C_4, the cyclic graph on 4 nodes. 3*A015518(n) + a(n) = 3^n. - Paul Barry, Feb 03 2004
Form the digraph with matrix A = [0,1,1,1; 1,0,1,1; 1,1,0,1; 1,0,1,1]; a(n) corresponds to the (1,1) term of A^n. - Paul Barry, Oct 02 2004
Absolute values of A084567 (compare generating functions).
For n > 1, 4*a(n)=A218034(n)= the trace of the n-th power of the adjacency matrix for a complete 4-graph, a 4 X 4 matrix with a null diagonal and all ones for off-diagonal elements. The diagonal elements for the n-th power are a(n) and the off-diagonal are a(n)+1 for an odd power and a(n)-1 for an even (cf. A001045). - Tom Copeland, Nov 06 2012

Crossrefs

Row n=4 of A109502. A084567 (signed version).
{a(n)/3} for n>0 is A015518, non-closed walks.
Cf. A001045, A078008, A097073, A115341, A015518 (sequences where a(n)=3^n-a(n-1)). - Vladimir Joseph Stephan Orlovsky, Dec 11 2008

Programs

  • Magma
    [(3^n+(-1)^n*3)/4: n in [0..35]]; // Vincenzo Librandi, Jun 30 2011
    
  • Maple
    A054878:=n->(3^n + (-1)^n*3)/4: seq(A054878(n), n=0..50); # Wesley Ivan Hurt, Sep 16 2017
  • Mathematica
    Table[(3^n + (-1)^n*3)/4, {n, 0, 26}] (* or *)
    CoefficientList[Series[1/4*(3/(1 + x) + 1/(1 - 3 x)), {x, 0, 26}], x] (* Michael De Vlieger, Sep 15 2017 *)
  • PARI
    a(n) = (3^n + 3*(-1)^n)/4; \\ Altug Alkan, Sep 17 2017

Formula

a(n) = (3^n + (-1)^n*3)/4.
G.f.: 1/4*(3/(1+x) + 1/(1-3*x)).
E.g.f.: (exp(3*x) + 3*exp(-x))/4. - Paul Barry, Apr 20 2003
a(n) = 3^n - a(n-1) with a(0)=0. - Labos Elemer, Apr 26 2003
G.f.: (1 - 3*x^2 - 2*x^3)/(1 - 6*x^2 - 8*x^3 - 3*x^4) = (1 - 3*x^2 - 2*x^3)/charpoly(adj(C_4)). - Paul Barry, Feb 03 2004
From Paul Barry, Oct 02 2004: (Start)
G.f.: (1-2*x)/(1 - 2*x - 3*x^2).
a(n) = 2*a(n-1) + 3*a(n-2). (End)
G.f.: 1 - x + x/Q(0), where Q(k) = 1 + 3*x^2 - (3*k+4)*x + x*(3*k+1 - 3*x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 07 2013
a(n+m) = a(n)*a(m) + a(n+1)*a(m+1)/3. - Yuchun Ji, Sep 12 2017
a(n) = 3*a(n-1) + 3*(-1)^n. - Yuchun Ji, Sep 13 2017
From Peter Bala, May 28 2024: (Start)
a(n) = (-1)^n + Sum_{k = 1..n} (-1)^(n-k)*binomial(n, k)*4^(k-1).
G.f.: A(x) = 1/(1 - x^2) o 1/(1 - x^2), where o denotes the black diamond product of power series as defined by Dukes and White. Cf. A015575.
The black diamond product A(x) o A(x) is the g.f. for the number of closed walks of length n at a vertex along the edges of the 15-simplex. (End)