A054878 Number of closed walks of length n along the edges of a tetrahedron based at a vertex.
1, 0, 3, 6, 21, 60, 183, 546, 1641, 4920, 14763, 44286, 132861, 398580, 1195743, 3587226, 10761681, 32285040, 96855123, 290565366, 871696101, 2615088300, 7845264903, 23535794706, 70607384121, 211822152360, 635466457083
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Ji Young Choi, A Generalization of Collatz Functions and Jacobsthal Numbers, J. Int. Seq., Vol. 21 (2018), Article 18.5.4.
- M. Dukes and C. D. White, Web Matrices: Structural Properties and Generating Combinatorial Identities, arXiv:1603.01589 [math.CO], 2016.
- R. J. Mathar, Counting Walks on Finite Graphs, (Nov 2020), Section 2.
- Index entries for linear recurrences with constant coefficients, signature (2,3).
Crossrefs
Programs
-
Magma
[(3^n+(-1)^n*3)/4: n in [0..35]]; // Vincenzo Librandi, Jun 30 2011
-
Maple
A054878:=n->(3^n + (-1)^n*3)/4: seq(A054878(n), n=0..50); # Wesley Ivan Hurt, Sep 16 2017
-
Mathematica
Table[(3^n + (-1)^n*3)/4, {n, 0, 26}] (* or *) CoefficientList[Series[1/4*(3/(1 + x) + 1/(1 - 3 x)), {x, 0, 26}], x] (* Michael De Vlieger, Sep 15 2017 *)
-
PARI
a(n) = (3^n + 3*(-1)^n)/4; \\ Altug Alkan, Sep 17 2017
Formula
a(n) = (3^n + (-1)^n*3)/4.
G.f.: 1/4*(3/(1+x) + 1/(1-3*x)).
E.g.f.: (exp(3*x) + 3*exp(-x))/4. - Paul Barry, Apr 20 2003
a(n) = 3^n - a(n-1) with a(0)=0. - Labos Elemer, Apr 26 2003
G.f.: (1 - 3*x^2 - 2*x^3)/(1 - 6*x^2 - 8*x^3 - 3*x^4) = (1 - 3*x^2 - 2*x^3)/charpoly(adj(C_4)). - Paul Barry, Feb 03 2004
From Paul Barry, Oct 02 2004: (Start)
G.f.: (1-2*x)/(1 - 2*x - 3*x^2).
a(n) = 2*a(n-1) + 3*a(n-2). (End)
G.f.: 1 - x + x/Q(0), where Q(k) = 1 + 3*x^2 - (3*k+4)*x + x*(3*k+1 - 3*x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 07 2013
a(n+m) = a(n)*a(m) + a(n+1)*a(m+1)/3. - Yuchun Ji, Sep 12 2017
a(n) = 3*a(n-1) + 3*(-1)^n. - Yuchun Ji, Sep 13 2017
From Peter Bala, May 28 2024: (Start)
a(n) = (-1)^n + Sum_{k = 1..n} (-1)^(n-k)*binomial(n, k)*4^(k-1).
G.f.: A(x) = 1/(1 - x^2) o 1/(1 - x^2), where o denotes the black diamond product of power series as defined by Dukes and White. Cf. A015575.
The black diamond product A(x) o A(x) is the g.f. for the number of closed walks of length n at a vertex along the edges of the 15-simplex. (End)
Comments